import gradio as gr from huggingface_hub import InferenceClient import fitz # PyMuPDF """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def extract_text_from_pdf(pdf_path): # Open the provided PDF file doc = fitz.open(pdf_path) text = "" # Extract text from each page for page in doc: text += page.get_text() doc.close() # Ensure the PDF file is closed return text def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token print(f"Token: {token}") # Debugging statement to trace tokens yield response # Yield the complete response up to this point def process_resume_and_respond(pdf_file, message, history, system_message, max_tokens, temperature, top_p): # Extract text from the PDF file resume_text = extract_text_from_pdf(pdf_file.name) # Combine the resume text with the user message combined_message = f"Resume:\n{resume_text}\n\nUser message:\n{message}" # Respond using the combined message response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p) response = "".join([token for token in response_gen]) return response # Store the uploaded PDF content globally uploaded_resume_text = "" def upload_resume(pdf_file): global uploaded_resume_text uploaded_resume_text = extract_text_from_pdf(pdf_file.name) return "Resume uploaded successfully! now click on chat with job advisor right above this tab to start chatting!" def respond_with_resume(message, history, system_message, max_tokens, temperature, top_p): global uploaded_resume_text # Combine the uploaded resume text with the user message combined_message = f"Resume:\n{uploaded_resume_text}\n\nUser message:\n{message}" # Respond using the combined message response_gen = respond(combined_message, history, system_message, max_tokens, temperature, top_p) # Collect all tokens generated response = "" for token in response_gen: response = token # Update the response with the latest token return response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ upload_interface = gr.Interface( upload_resume, inputs=gr.File(label="Upload Resume PDF"), outputs=gr.Textbox(label="Upload Status"), ) chat_interface = gr.ChatInterface( respond_with_resume, additional_inputs=[ gr.Textbox(value="You are a Job Advisor Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) demo = gr.TabbedInterface( [upload_interface, chat_interface], ["Upload Resume", "Chat with Job Advisor"] ) if __name__ == "__main__": demo.launch()