A_Dog_Or_A_Cat / CatVsDogTrain.py
shyamgupta196
map to cpu
c27b177
raw
history blame
12.1 kB
"""
In this TorchDaily we will TRAIN
A MODEL USING TRANSFER LEARNING
Cats Vs Dogs Dataset
EARLIER ACC==14% OR LESS
NOW ITS 70% AND MORE
THE POWER OF ALEXNET (PRETRAINED MODELS IS VISIBLE)
DATE ==> 10-05-21
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from torchvision import transforms, datasets, models
import torchvision
from tqdm import tqdm
import os
import PIL.Image as Image
import time
import torch, torchvision
from torchvision import datasets, models, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import time
# from torchsummary import summary
import numpy as np
import matplotlib.pyplot as plt
import os
from PIL import Image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# prepare data
convert = transforms.Compose(
[
transforms.Resize((128, 128)),
transforms.RandomHorizontalFlip(0.2),
transforms.ToTensor(),
]
)
# dataloader
data = datasets.ImageFolder(root="PetImages/", transform=convert)
Loader = DataLoader(data, batch_size=64, shuffle=True)
MAP = {0: "Cat", 1: "Dog"}
##UNCOMMENT FOR SEEING THE DATA IMAGES
# fig, ax = plt.subplots(8, 8, figsize=(20, 20))
# fig.suptitle("Dogs And Cats IMages")
# for i, (img, lab) in zip(range(0, 8 * 8), Loader):
# x = i // 8
# y = i % 8
# print(f"{x},{y}")
# ax[x, y].imshow(img[i].squeeze().permute(1,2,0))
# ax[x, y].set_title(f"{lab[i]}")
# ax[x, y].axis("off")
# plt.show()
# # Add on classifier
# # HOW TO CHANGE THE INPUT LAYER WHICH ACCEPTS THE 224*224 INPUT
# # I WANNA CHANGE THAT TO 128*128 THIS SIZE WILL SUFFICE
# We Use AlexNet for transfer learning
##answers below
alexnet = torchvision.models.alexnet(pretrained=True)
for param in alexnet.parameters():
param.requires_grad = False
# Add a avgpool here
avgpool = nn.AdaptiveAvgPool2d((7, 7))
# Replace the classifier layer
# to customise it according to our output
alexnet.classifier = nn.Sequential(
nn.Linear(256 * 7 * 7, 1024),
nn.Linear(1024, 256),
nn.Linear(256, 2),
)
# putting model in a training mode
alexnet.train()
print(alexnet)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(alexnet.parameters(), lr=0.001)
EPOCHS = 4
TRAIN = False
losses = []
def train_and_validate(model, loss_criterion, optimizer, epochs=25):
"""
Function to train and validate
Parameters
:param model: Model to train and validate
:param loss_criterion: Loss Criterion to minimize
:param optimizer: Optimizer for computing gradients
:param epochs: Number of epochs (default=25)
Returns
model: Trained Model with best validation accuracy
history: (dict object): Having training loss, accuracy and validation loss, accuracy
"""
start = time.time()
history = []
best_acc = 0.0
for epoch in range(epochs):
epoch_start = time.time()
print("Epoch: {}/{}".format(epoch + 1, epochs))
# Set to training mode
# model.train()
# Loss and Accuracy within the epoch
train_loss = 0.0
train_acc = 0.0
valid_loss = 0.0
valid_acc = 0.0
for i, (inputs, labels) in enumerate(Loader):
inputs = inputs.to(device)
labels = labels.to(device)
# Clean existing gradients
optimizer.zero_grad()
# Forward pass - compute outputs on input data using the model
x = alexnet.features(inputs)
x = avgpool(x)
x = x.view(-1, 256 * 7 * 7)
outputs = alexnet.classifier(x)
# Compute loss
loss = loss_criterion(outputs, labels)
# Backpropagate the gradients
loss.backward()
# Update the parameters
optimizer.step()
# Compute the total loss for the batch and add it to train_loss
train_loss += loss.item() * inputs.size(0)
# Compute the accuracy
ret, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
# Convert correct_counts to float and then compute the mean
acc = torch.mean(correct_counts.type(torch.FloatTensor))
# Compute total accuracy in the whole batch and add to train_acc
train_acc += acc.item() * inputs.size(0)
# print("Batch number: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}".format(i, loss.item(), acc.item()))
# Validation - No gradient tracking needed
with torch.no_grad():
# Set to evaluation mode
model.eval()
# Validation loop
for j, (inputs, labels) in enumerate(valid_data_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# Forward pass - compute outputs on input data using the model
outputs = model(inputs)
# Compute loss
loss = loss_criterion(outputs, labels)
# Compute the total loss for the batch and add it to valid_loss
valid_loss += loss.item() * inputs.size(0)
# Calculate validation accuracy
ret, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
# Convert correct_counts to float and then compute the mean
acc = torch.mean(correct_counts.type(torch.FloatTensor))
# Compute total accuracy in the whole batch and add to valid_acc
valid_acc += acc.item() * inputs.size(0)
# print("Validation Batch number: {:03d}, Validation: Loss: {:.4f}, Accuracy: {:.4f}".format(j, loss.item(), acc.item()))
# Find average training loss and training accuracy
avg_train_loss = train_loss / train_data_size
avg_train_acc = train_acc / train_data_size
# Find average training loss and training accuracy
avg_valid_loss = valid_loss / valid_data_size
avg_valid_acc = valid_acc / valid_data_size
history.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])
epoch_end = time.time()
print(
"Epoch : {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation : Loss : {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(
epoch + 1,
avg_train_loss,
avg_train_acc * 100,
avg_valid_loss,
avg_valid_acc * 100,
epoch_end - epoch_start,
)
)
# Save if the model has best accuracy till now
torch.save(model, "CatVsDogsModel.pth")
return model, history
if TRAIN:
trained_model, history = train_and_validate(alexnet, criterion, optimizer, EPOCHS)
plt.plot(losses)
plt.show()
history = np.array(history)
plt.plot(history[:, 0:2])
plt.legend(["Tr Loss", "Val Loss"])
plt.xlabel("Epoch Number")
plt.ylabel("Loss")
plt.ylim(0, 1)
plt.savefig(dataset + "_loss_curve.png")
plt.show()
plt.plot(history[:, 2:4])
plt.legend(["Tr Accuracy", "Val Accuracy"])
plt.xlabel("Epoch Number")
plt.ylabel("Accuracy")
plt.ylim(0, 1)
plt.savefig(dataset + "_accuracy_curve.png")
plt.show()
TEST = False
history = []
def test():
test = datasets.ImageFolder(root="PetTest/", transform=convert)
testLoader = DataLoader(test, batch_size=16, shuffle=False)
checkpoint = torch.load("CatVsDogsModel.pth")
alexnet.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
for params in alexnet.parameters():
params.requires_grad == False
print(alexnet)
with torch.no_grad():
# Set to evaluation mode
alexnet.eval()
train_data_size = 101
valid_data_size = 101
# Validation loop
# Loss and Accuracy within the epoch
valid_loss = 0.0
valid_acc = 0.0
for j, (inputs, labels) in enumerate(testLoader):
inputs = inputs.to(device)
labels = labels.to(device)
# Forward pass - compute outputs on input data using the model
x = alexnet.features(inputs)
x = avgpool(x)
x = x.view(-1, 256 * 7 * 7)
outputs = alexnet.classifier(x)
# Compute loss
loss = criterion(outputs, labels)
# Compute the total loss for the batch and add it to valid_loss
valid_loss += loss.item() * inputs.size(0)
# Calculate validation accuracy
ret, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
# Convert correct_counts to float and then compute the mean
acc = torch.mean(correct_counts.type(torch.FloatTensor))
# Compute total accuracy in the whole batch and add to valid_acc
valid_acc += acc.item() * inputs.size(0)
print(
"""Validation Batch number: {:03d},
Validation: Loss: {:.4f},
Accuracy: {:.4f}""".format(
j, loss.item(), acc.item()
)
)
# Find average training loss and training accuracy
avg_valid_loss = valid_loss / valid_data_size
avg_valid_acc = valid_acc / valid_data_size
history.append([avg_valid_loss, avg_valid_acc])
print(
" Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation : Loss : {:.4f}, Accuracy: {:.4f}%".format(
avg_train_loss,
avg_train_acc * 100,
avg_valid_loss,
avg_valid_acc * 100,
)
)
plt.plot(valid_acc)
plt.plot(valid_loss)
plt.show()
if TEST:
test()
print("Validation Complete")
with open("ModelHistory.txt", "w") as f:
for i in history:
f.writelines(f"{i}")
print("Validation Complete")
## This model reported a accuracy of 97%(on DOGS ONLY) using AlexNet
## the Pros of using a pretrained model is clearly seen here
## date -- 13th April 2021 (thursday)
####ACCURACY AND OTHER THINGS TOO TO BE APPENDED SOON ######
PREDICT = True
def predict(model, test_image_name):
"""
Function to predict the class of a single test image
Parameters
:param model: Model to test
:param test_image_name: Test image
"""
# try:
transform = transforms.Compose(
[transforms.Resize((128, 128)), transforms.ToTensor()]
)
test_image = Image.open(test_image_name)
test_image_tensor = transform(test_image).to(device)
plt.imshow(test_image)
plt.axis("off")
plt.imshow(test_image_tensor.cpu().squeeze().permute(1, 2, 0))
plt.show()
with torch.no_grad():
model.eval()
test_image_tensor = test_image_tensor.unsqueeze(0)
print(test_image_tensor.shape)
x = alexnet.features(test_image_tensor)
x = avgpool(x)
x = x.view(-1, 256 * 7 * 7)
out = alexnet.classifier(x)
###THESE ARE SCORES OF THE ACC. ###
### UNCOMMENT TO SEE THE SCORES OF EACH CLASS ###
# ps = torch.exp(out)
# print(f'ps: {ps}')
# topk, topclass = ps.topk(2, dim=1)
# print(f'ps.topk: {ps.topk(2, dim=1)}')
# print(f'topclass: {topclass}')
print("Predcition", MAP[out.numpy().argmax()])
# print(f"out: {out.numpy().argmax()}")
# except Exception as e:
# print(e)
if PREDICT:
checkpoint = torch.load(
"CatVsDogsModel.pth", map_location=torch.device("cpu")
)
alexnet.load_state_dict(checkpoint["state_dict"])
alexnet = alexnet.to(device)
optimizer.load_state_dict(checkpoint["optimizer"])
for params in alexnet.parameters():
params.requires_grad == False
print(predict(alexnet, "PetTest/Cat/12401.jpg"))