Spaces:
Sleeping
Sleeping
Merge pull request #2 from bhanuprasanna527/main
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import yfinance as yf
|
4 |
+
import streamlit as st
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import datetime
|
7 |
+
|
8 |
+
with open(r"style/style.css") as css:
|
9 |
+
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
|
10 |
+
|
11 |
+
st.markdown(
|
12 |
+
"<h1 style='text-align: center;'><u>CapiPort</u></h1>", unsafe_allow_html=True
|
13 |
+
)
|
14 |
+
|
15 |
+
st.markdown(
|
16 |
+
"<h5 style='text-align: center; color: gray;'>Your Portfolio Optimisation Tool</h5>",
|
17 |
+
unsafe_allow_html=True,
|
18 |
+
)
|
19 |
+
st.header(
|
20 |
+
"",
|
21 |
+
divider="rainbow",
|
22 |
+
)
|
23 |
+
|
24 |
+
color = "Quest"
|
25 |
+
st.markdown(
|
26 |
+
"<h1 style='text-align: center;'>🔍 Quest for financial excellence begins with meticulous portfolio optimization</u></h1>",
|
27 |
+
unsafe_allow_html=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
st.header(
|
31 |
+
"",
|
32 |
+
divider="rainbow",
|
33 |
+
)
|
34 |
+
|
35 |
+
list_df = pd.read_csv("Data/Company List.csv")
|
36 |
+
|
37 |
+
company_name = list_df["Name"].to_list()
|
38 |
+
company_symbol = (list_df["Ticker"] + ".NS").to_list()
|
39 |
+
|
40 |
+
company_dict = dict()
|
41 |
+
company_symbol_dict = dict()
|
42 |
+
|
43 |
+
for CSymbol, CName in zip(company_symbol, company_name):
|
44 |
+
company_dict[CName] = CSymbol
|
45 |
+
|
46 |
+
for CSymbol, CName in zip(company_symbol, company_name):
|
47 |
+
company_symbol_dict[CSymbol] = CName
|
48 |
+
|
49 |
+
st.markdown(
|
50 |
+
"""
|
51 |
+
<style>
|
52 |
+
.big-font {
|
53 |
+
font-size:20px;
|
54 |
+
}
|
55 |
+
</style>""",
|
56 |
+
unsafe_allow_html=True,
|
57 |
+
)
|
58 |
+
|
59 |
+
st.markdown('<p class="big-font">Select Multiple Companies</p>', unsafe_allow_html=True)
|
60 |
+
|
61 |
+
com_sel_name = st.multiselect("", company_name, default=None)
|
62 |
+
com_sel_date = []
|
63 |
+
|
64 |
+
for i in com_sel_name:
|
65 |
+
d = st.date_input(
|
66 |
+
f"Select your vacation for next year - {i}",
|
67 |
+
format="YYYY-MM-DD",
|
68 |
+
)
|
69 |
+
com_sel_date.append(d)
|
70 |
+
|
71 |
+
com_sel = [company_dict[i] for i in com_sel_name]
|
72 |
+
|
73 |
+
num_tick = len(com_sel)
|
74 |
+
|
75 |
+
if num_tick > 1:
|
76 |
+
|
77 |
+
com_data = pd.DataFrame()
|
78 |
+
for cname, cdate in zip(com_sel, com_sel_date):
|
79 |
+
stock_data_temp = yf.download(cname, start=cdate, end=pd.Timestamp.now().strftime('%Y-%m-%d'))
|
80 |
+
com_data[cname] = stock_data_temp["Adj Close"]
|
81 |
+
|
82 |
+
|
83 |
+
|
main.py
CHANGED
@@ -34,7 +34,6 @@ st.header(
|
|
34 |
divider="rainbow",
|
35 |
)
|
36 |
|
37 |
-
|
38 |
list_df = pd.read_csv("Data/Company List.csv")
|
39 |
|
40 |
company_name = list_df["Name"].to_list()
|
@@ -62,6 +61,15 @@ st.markdown(
|
|
62 |
st.markdown('<p class="big-font">Select Multiple Companies</p>', unsafe_allow_html=True)
|
63 |
|
64 |
com_sel_name = st.multiselect("", company_name, default=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
com_sel = [company_dict[i] for i in com_sel_name]
|
67 |
|
@@ -69,10 +77,15 @@ num_tick = len(com_sel)
|
|
69 |
|
70 |
if num_tick > 1:
|
71 |
|
72 |
-
com_data =
|
|
|
|
|
|
|
|
|
|
|
73 |
for i in com_data.columns:
|
74 |
com_data.dropna(axis=1, how='all', inplace=True)
|
75 |
-
com_data.dropna(inplace=True)
|
76 |
num_tick = len(com_data.columns)
|
77 |
|
78 |
if num_tick > 1:
|
@@ -81,7 +94,6 @@ if num_tick > 1:
|
|
81 |
com_sel_name_temp.append(company_symbol_dict[i])
|
82 |
|
83 |
com_sel = com_data.columns.to_list()
|
84 |
-
com_sel_name.sort()
|
85 |
|
86 |
st.dataframe(com_data, use_container_width=True)
|
87 |
|
@@ -94,11 +106,11 @@ if num_tick > 1:
|
|
94 |
## Rebalancing Random Weights
|
95 |
rebal_weig = rand_weig / np.sum(rand_weig)
|
96 |
|
97 |
-
## Calculate the Expected Returns, Annualize it by *
|
98 |
-
exp_ret = np.sum((log_return.mean() * rebal_weig) *
|
99 |
|
100 |
-
## Calculate the Expected Volatility, Annualize it by *
|
101 |
-
exp_vol = np.sqrt(np.dot(rebal_weig.T, np.dot(log_return.cov() *
|
102 |
|
103 |
## Calculate the Sharpe Ratio.
|
104 |
sharpe_ratio = exp_ret / exp_vol
|
|
|
34 |
divider="rainbow",
|
35 |
)
|
36 |
|
|
|
37 |
list_df = pd.read_csv("Data/Company List.csv")
|
38 |
|
39 |
company_name = list_df["Name"].to_list()
|
|
|
61 |
st.markdown('<p class="big-font">Select Multiple Companies</p>', unsafe_allow_html=True)
|
62 |
|
63 |
com_sel_name = st.multiselect("", company_name, default=None)
|
64 |
+
com_sel_date = []
|
65 |
+
|
66 |
+
for i in com_sel_name:
|
67 |
+
d = st.date_input(
|
68 |
+
f"Select your vacation for next year - {i}",
|
69 |
+
value= pd.Timestamp('2021-01-01'),
|
70 |
+
format="YYYY-MM-DD",
|
71 |
+
)
|
72 |
+
com_sel_date.append(d)
|
73 |
|
74 |
com_sel = [company_dict[i] for i in com_sel_name]
|
75 |
|
|
|
77 |
|
78 |
if num_tick > 1:
|
79 |
|
80 |
+
com_data = pd.DataFrame()
|
81 |
+
for cname, cdate in zip(com_sel, com_sel_date):
|
82 |
+
stock_data_temp = yf.download(cname, start=cdate, end=pd.Timestamp.now().strftime('%Y-%m-%d'))['Adj Close']
|
83 |
+
stock_data_temp.name = cname
|
84 |
+
com_data = pd.merge(com_data, stock_data_temp, how="outer", right_index=True, left_index=True)
|
85 |
+
|
86 |
for i in com_data.columns:
|
87 |
com_data.dropna(axis=1, how='all', inplace=True)
|
88 |
+
# com_data.dropna(inplace=True)
|
89 |
num_tick = len(com_data.columns)
|
90 |
|
91 |
if num_tick > 1:
|
|
|
94 |
com_sel_name_temp.append(company_symbol_dict[i])
|
95 |
|
96 |
com_sel = com_data.columns.to_list()
|
|
|
97 |
|
98 |
st.dataframe(com_data, use_container_width=True)
|
99 |
|
|
|
106 |
## Rebalancing Random Weights
|
107 |
rebal_weig = rand_weig / np.sum(rand_weig)
|
108 |
|
109 |
+
## Calculate the Expected Returns, Annualize it by * 252.0
|
110 |
+
exp_ret = np.sum((log_return.mean() * rebal_weig) * 252)
|
111 |
|
112 |
+
## Calculate the Expected Volatility, Annualize it by * 252.0
|
113 |
+
exp_vol = np.sqrt(np.dot(rebal_weig.T, np.dot(log_return.cov() * 252, rebal_weig)))
|
114 |
|
115 |
## Calculate the Sharpe Ratio.
|
116 |
sharpe_ratio = exp_ret / exp_vol
|