Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import joblib
|
3 |
+
from sklearn.ensemble import RandomForestRegressor
|
4 |
+
import gzip
|
5 |
+
from rdkit.Chem import MolFromSmiles, rdMolDescriptors
|
6 |
+
from rdkit.Chem.Descriptors import CalcMolDescriptors
|
7 |
+
import lightgbm as lgb
|
8 |
+
from sklearn.ensemble import ExtraTreesRegressor
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
class Molecule:
|
12 |
+
def __init__(self, smiles: str):
|
13 |
+
if not smiles :
|
14 |
+
print("Empty smiles are given")
|
15 |
+
sys.exit()
|
16 |
+
self.smiles = smiles
|
17 |
+
self.mol = MolFromSmiles(smiles)
|
18 |
+
def descriptor_generator(self):
|
19 |
+
return CalcMolDescriptors(self.mol)
|
20 |
+
|
21 |
+
SMI = st.text_input('Input SMILE', 'O=Cc1ccc(Cl)cc1')
|
22 |
+
st.write('The input SMILE is', str(SMI))
|
23 |
+
mol = MolFromSmiles(SMI)
|
24 |
+
|
25 |
+
formula = rdMolDescriptors.CalcMolFormula(MolFromSmiles(SMI))
|
26 |
+
descriptors = CalcMolDescriptors(mol)
|
27 |
+
descriptors_dataframe = pd.DataFrame([list(descriptors.values())], columns= list(descriptors.keys()))
|
28 |
+
st.markdown(''':rainbow[ABSORPTION]''')
|
29 |
+
|
30 |
+
st.markdown(''':rainbow[Lipophilicity]''')
|
31 |
+
|
32 |
+
st.markdown(''':orange[LGBMRegressor]''')
|
33 |
+
|
34 |
+
|
35 |
+
with gzip.GzipFile('model/Absorption_Lipophilicity_Prediction_lgbm_model.joblib.gz', 'rb') as fa:
|
36 |
+
Absorption_Lipophilicity_Prediction_lgbm_model = joblib.load(fa)
|
37 |
+
|
38 |
+
st.write("Absorption Lipophilicity Result for LGBM Regressor : ", round(Absorption_Lipophilicity_Prediction_lgbm_model.predict(descriptors_dataframe)[0],4))
|
39 |
+
|
40 |
+
|
41 |
+
with gzip.GzipFile('model/Absorption_Lipophilicity_Prediction_etr_model.joblib.gz', 'rb') as fe:
|
42 |
+
Absorption_Lipophilicity_Prediction_etr_model = joblib.load(fe)
|
43 |
+
|
44 |
+
st.markdown(''':orange[ExtraTreesRegressor]''')
|
45 |
+
st.write("Absorption_Lipophilicity Result for ExtraTreesRegressor : ", round(Absorption_Lipophilicity_Prediction_etr_model.predict(descriptors_dataframe)[0],4))
|
46 |
+
|
47 |
+
|
48 |
+
with gzip.GzipFile('model/Absorption_Lipophilicity_Prediction_rf_model.joblib.gz', 'rb') as fi:
|
49 |
+
Absorption_Lipophilicity_Prediction_rf_model = joblib.load(fi)
|
50 |
+
|
51 |
+
|
52 |
+
st.markdown(''':orange[RandomForestRegressor]''')
|
53 |
+
st.write("Absorption_Lipophilicity Result for RandomForestRegressor : ", round(Absorption_Lipophilicity_Prediction_rf_model.predict(descriptors_dataframe)[0],4))
|
54 |
+
|
55 |
+
|
56 |
+
with gzip.GzipFile('model/Absorption_Lipophilicity_Prediction_rf_model_optimised.joblib.gz', 'rb') as fo:
|
57 |
+
Absorption_Lipophilicity_Prediction_rf_model_optimised = joblib.load(fo)
|
58 |
+
|
59 |
+
st.markdown(''':orange[RandomForestRegressor Optimised]''')
|
60 |
+
st.write("Absorption_Lipophilicity Result for Optimised RandomForestRegressor : ", round(Absorption_Lipophilicity_Prediction_rf_model_optimised.predict(descriptors_dataframe)[0],4))
|
61 |
+
|
62 |
+
with gzip.GzipFile('model/Absorption_Lipophilicity_Prediction_etr_model_optimised.joblib.gz', 'rb') as fu:
|
63 |
+
Absorption_Lipophilicity_Prediction_etr_model_optimised = joblib.load(fu)
|
64 |
+
|
65 |
+
st.markdown(''':orange[ExtraTreesRegressor Optimised]''')
|
66 |
+
st.write("Absorption_Lipophilicity Result for Optimised ExtraTreesRegressor : ", round(Absorption_Lipophilicity_Prediction_etr_model_optimised.predict(descriptors_dataframe)[0],4))
|
67 |
+
|
68 |
+
st.markdown(''':orange[LGBMRegressor Optimised]''')
|
69 |
+
with gzip.GzipFile('model/Absorption_Lipophilicity_Prediction_lgbm_model_optimised.joblib.gz', 'rb') as fb:
|
70 |
+
Absorption_Lipophilicity_Prediction_lgbm_model_optimised = joblib.load(fb)
|
71 |
+
|
72 |
+
st.write("Absorption Lipophilicity Result for Optimised LGBM Regressor : ", round(Absorption_Lipophilicity_Prediction_lgbm_model_optimised.predict(descriptors_dataframe)[0],4))
|