File size: 5,946 Bytes
da326a1
 
 
b4d894b
 
3a397ef
da326a1
 
 
b4d894b
da326a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import cv2
import numpy as np
#import tensorflow as tf
import tensorflow.compat.v1 as tf
import tf_slim as slim
import streamlit as st
from PIL import Image

tf.disable_v2_behavior()

def tf_box_filter(x, r):
    k_size = int(2 * r + 1)
    ch = x.get_shape().as_list()[-1]
    weight = 1 / (k_size ** 2)
    box_kernel = weight * np.ones((k_size, k_size, ch, 1))
    box_kernel = np.array(box_kernel).astype(np.float32)
    output = tf.nn.depthwise_conv2d(x, box_kernel, [1, 1, 1, 1], 'SAME')
    return output


def guided_filter(x, y, r, eps=1e-2):
    x_shape = tf.shape(x)
    # y_shape = tf.shape(y)

    N = tf_box_filter(tf.ones((1, x_shape[1], x_shape[2], 1), dtype=x.dtype), r)

    mean_x = tf_box_filter(x, r) / N
    mean_y = tf_box_filter(y, r) / N
    cov_xy = tf_box_filter(x * y, r) / N - mean_x * mean_y
    var_x = tf_box_filter(x * x, r) / N - mean_x * mean_x

    A = cov_xy / (var_x + eps)
    b = mean_y - A * mean_x

    mean_A = tf_box_filter(A, r) / N
    mean_b = tf_box_filter(b, r) / N

    output = mean_A * x + mean_b

    return output


def fast_guided_filter(lr_x, lr_y, hr_x, r=1, eps=1e-8):
    # assert lr_x.shape.ndims == 4 and lr_y.shape.ndims == 4 and hr_x.shape.ndims == 4

    lr_x_shape = tf.shape(lr_x)
    # lr_y_shape = tf.shape(lr_y)
    hr_x_shape = tf.shape(hr_x)

    N = tf_box_filter(tf.ones((1, lr_x_shape[1], lr_x_shape[2], 1), dtype=lr_x.dtype), r)

    mean_x = tf_box_filter(lr_x, r) / N
    mean_y = tf_box_filter(lr_y, r) / N
    cov_xy = tf_box_filter(lr_x * lr_y, r) / N - mean_x * mean_y
    var_x = tf_box_filter(lr_x * lr_x, r) / N - mean_x * mean_x

    A = cov_xy / (var_x + eps)
    b = mean_y - A * mean_x

    mean_A = tf.image.resize_images(A, hr_x_shape[1: 3])
    mean_b = tf.image.resize_images(b, hr_x_shape[1: 3])

    output = mean_A * hr_x + mean_b

    return output


def resblock(inputs, out_channel=32, name='resblock'):
    with tf.variable_scope(name):
        x = slim.convolution2d(inputs, out_channel, [3, 3],
                               activation_fn=None, scope='conv1')
        x = tf.nn.leaky_relu(x)
        x = slim.convolution2d(x, out_channel, [3, 3],
                               activation_fn=None, scope='conv2')

        return x + inputs


def unet_generator(inputs, channel=32, num_blocks=4, name='generator', reuse=False):
    with tf.variable_scope(name, reuse=reuse):
        x0 = slim.convolution2d(inputs, channel, [7, 7], activation_fn=None)
        x0 = tf.nn.leaky_relu(x0)

        x1 = slim.convolution2d(x0, channel, [3, 3], stride=2, activation_fn=None)
        x1 = tf.nn.leaky_relu(x1)
        x1 = slim.convolution2d(x1, channel * 2, [3, 3], activation_fn=None)
        x1 = tf.nn.leaky_relu(x1)

        x2 = slim.convolution2d(x1, channel * 2, [3, 3], stride=2, activation_fn=None)
        x2 = tf.nn.leaky_relu(x2)
        x2 = slim.convolution2d(x2, channel * 4, [3, 3], activation_fn=None)
        x2 = tf.nn.leaky_relu(x2)

        for idx in range(num_blocks):
            x2 = resblock(x2, out_channel=channel * 4, name='block_{}'.format(idx))

        x2 = slim.convolution2d(x2, channel * 2, [3, 3], activation_fn=None)
        x2 = tf.nn.leaky_relu(x2)

        h1, w1 = tf.shape(x2)[1], tf.shape(x2)[2]
        x3 = tf.image.resize_bilinear(x2, (h1 * 2, w1 * 2))
        x3 = slim.convolution2d(x3 + x1, channel * 2, [3, 3], activation_fn=None)
        x3 = tf.nn.leaky_relu(x3)
        x3 = slim.convolution2d(x3, channel, [3, 3], activation_fn=None)
        x3 = tf.nn.leaky_relu(x3)

        h2, w2 = tf.shape(x3)[1], tf.shape(x3)[2]
        x4 = tf.image.resize_bilinear(x3, (h2 * 2, w2 * 2))
        x4 = slim.convolution2d(x4 + x0, channel, [3, 3], activation_fn=None)
        x4 = tf.nn.leaky_relu(x4)
        x4 = slim.convolution2d(x4, 3, [7, 7], activation_fn=None)

        return x4


def resize_crop(image):
    h, w, c = np.shape(image)
    #st.write(h, w, c)
    if min(h, w) > 720:
        if h > w:
            h, w = int(720 * h / w), 720
        else:
            h, w = 720, int(720 * w / h)
    w = int(w / 2)
    h = int(h / 2)
    st.image(image, caption=f'Your image', width=w)
    image = cv2.resize(np.float32(image), (w, h),
                       interpolation=cv2.INTER_AREA)
    h, w = (h // 8) * 8, (w // 8) * 8
    #st.write(h,w)
    image = image[:h, :w, :]
    return image


def cartoonize(infile, outfile, model_path):

    input_photo = tf.placeholder(tf.float32, [1, None, None, 3])
    network_out = unet_generator(input_photo)
    final_out = guided_filter(input_photo, network_out, r=1, eps=5e-3)

    all_vars = tf.trainable_variables()
    gene_vars = [var for var in all_vars if 'generator' in var.name]
    saver = tf.train.Saver(var_list=gene_vars)

    config = tf.ConfigProto()
    #config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    sess.run(tf.global_variables_initializer())
    saver.restore(sess, tf.train.latest_checkpoint(model_path))

    #image = cv2.imread(infile)
    image = infile
    image = resize_crop(image)
    batch_image = image.astype(np.float32) / 127.5 - 1
    batch_image = np.expand_dims(batch_image, axis=0)
    output = sess.run(final_out, feed_dict={input_photo: batch_image})
    output = (np.squeeze(output) + 1) * 127.5
    output = np.clip(output, 0, 255).astype(np.uint8)
    cv2.imwrite(outfile, output)


def main():

    model_path = 'saved_model'
    outfile = "result.jpg"
    if os.path.exists(outfile):
        os.system(f"rm -f {outfile}")

    st.title('Cartoonify!')
    infile = st.file_uploader("Choose an image file to cartoonify", type=["jpg", "jpeg"])

    if infile is not None:
        image = Image.open(infile)
        #st.image(image, caption=f'Your image', use_column_width=True)
        cartoonize(image, outfile, model_path)

        omage = Image.open(outfile)
        st.image(omage, caption=f'Cartoonized version: {outfile}')



if __name__ == "__main__":
    main()