Spaces:
Runtime error
Runtime error
File size: 5,946 Bytes
da326a1 b4d894b 3a397ef da326a1 b4d894b da326a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import cv2
import numpy as np
#import tensorflow as tf
import tensorflow.compat.v1 as tf
import tf_slim as slim
import streamlit as st
from PIL import Image
tf.disable_v2_behavior()
def tf_box_filter(x, r):
k_size = int(2 * r + 1)
ch = x.get_shape().as_list()[-1]
weight = 1 / (k_size ** 2)
box_kernel = weight * np.ones((k_size, k_size, ch, 1))
box_kernel = np.array(box_kernel).astype(np.float32)
output = tf.nn.depthwise_conv2d(x, box_kernel, [1, 1, 1, 1], 'SAME')
return output
def guided_filter(x, y, r, eps=1e-2):
x_shape = tf.shape(x)
# y_shape = tf.shape(y)
N = tf_box_filter(tf.ones((1, x_shape[1], x_shape[2], 1), dtype=x.dtype), r)
mean_x = tf_box_filter(x, r) / N
mean_y = tf_box_filter(y, r) / N
cov_xy = tf_box_filter(x * y, r) / N - mean_x * mean_y
var_x = tf_box_filter(x * x, r) / N - mean_x * mean_x
A = cov_xy / (var_x + eps)
b = mean_y - A * mean_x
mean_A = tf_box_filter(A, r) / N
mean_b = tf_box_filter(b, r) / N
output = mean_A * x + mean_b
return output
def fast_guided_filter(lr_x, lr_y, hr_x, r=1, eps=1e-8):
# assert lr_x.shape.ndims == 4 and lr_y.shape.ndims == 4 and hr_x.shape.ndims == 4
lr_x_shape = tf.shape(lr_x)
# lr_y_shape = tf.shape(lr_y)
hr_x_shape = tf.shape(hr_x)
N = tf_box_filter(tf.ones((1, lr_x_shape[1], lr_x_shape[2], 1), dtype=lr_x.dtype), r)
mean_x = tf_box_filter(lr_x, r) / N
mean_y = tf_box_filter(lr_y, r) / N
cov_xy = tf_box_filter(lr_x * lr_y, r) / N - mean_x * mean_y
var_x = tf_box_filter(lr_x * lr_x, r) / N - mean_x * mean_x
A = cov_xy / (var_x + eps)
b = mean_y - A * mean_x
mean_A = tf.image.resize_images(A, hr_x_shape[1: 3])
mean_b = tf.image.resize_images(b, hr_x_shape[1: 3])
output = mean_A * hr_x + mean_b
return output
def resblock(inputs, out_channel=32, name='resblock'):
with tf.variable_scope(name):
x = slim.convolution2d(inputs, out_channel, [3, 3],
activation_fn=None, scope='conv1')
x = tf.nn.leaky_relu(x)
x = slim.convolution2d(x, out_channel, [3, 3],
activation_fn=None, scope='conv2')
return x + inputs
def unet_generator(inputs, channel=32, num_blocks=4, name='generator', reuse=False):
with tf.variable_scope(name, reuse=reuse):
x0 = slim.convolution2d(inputs, channel, [7, 7], activation_fn=None)
x0 = tf.nn.leaky_relu(x0)
x1 = slim.convolution2d(x0, channel, [3, 3], stride=2, activation_fn=None)
x1 = tf.nn.leaky_relu(x1)
x1 = slim.convolution2d(x1, channel * 2, [3, 3], activation_fn=None)
x1 = tf.nn.leaky_relu(x1)
x2 = slim.convolution2d(x1, channel * 2, [3, 3], stride=2, activation_fn=None)
x2 = tf.nn.leaky_relu(x2)
x2 = slim.convolution2d(x2, channel * 4, [3, 3], activation_fn=None)
x2 = tf.nn.leaky_relu(x2)
for idx in range(num_blocks):
x2 = resblock(x2, out_channel=channel * 4, name='block_{}'.format(idx))
x2 = slim.convolution2d(x2, channel * 2, [3, 3], activation_fn=None)
x2 = tf.nn.leaky_relu(x2)
h1, w1 = tf.shape(x2)[1], tf.shape(x2)[2]
x3 = tf.image.resize_bilinear(x2, (h1 * 2, w1 * 2))
x3 = slim.convolution2d(x3 + x1, channel * 2, [3, 3], activation_fn=None)
x3 = tf.nn.leaky_relu(x3)
x3 = slim.convolution2d(x3, channel, [3, 3], activation_fn=None)
x3 = tf.nn.leaky_relu(x3)
h2, w2 = tf.shape(x3)[1], tf.shape(x3)[2]
x4 = tf.image.resize_bilinear(x3, (h2 * 2, w2 * 2))
x4 = slim.convolution2d(x4 + x0, channel, [3, 3], activation_fn=None)
x4 = tf.nn.leaky_relu(x4)
x4 = slim.convolution2d(x4, 3, [7, 7], activation_fn=None)
return x4
def resize_crop(image):
h, w, c = np.shape(image)
#st.write(h, w, c)
if min(h, w) > 720:
if h > w:
h, w = int(720 * h / w), 720
else:
h, w = 720, int(720 * w / h)
w = int(w / 2)
h = int(h / 2)
st.image(image, caption=f'Your image', width=w)
image = cv2.resize(np.float32(image), (w, h),
interpolation=cv2.INTER_AREA)
h, w = (h // 8) * 8, (w // 8) * 8
#st.write(h,w)
image = image[:h, :w, :]
return image
def cartoonize(infile, outfile, model_path):
input_photo = tf.placeholder(tf.float32, [1, None, None, 3])
network_out = unet_generator(input_photo)
final_out = guided_filter(input_photo, network_out, r=1, eps=5e-3)
all_vars = tf.trainable_variables()
gene_vars = [var for var in all_vars if 'generator' in var.name]
saver = tf.train.Saver(var_list=gene_vars)
config = tf.ConfigProto()
#config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
saver.restore(sess, tf.train.latest_checkpoint(model_path))
#image = cv2.imread(infile)
image = infile
image = resize_crop(image)
batch_image = image.astype(np.float32) / 127.5 - 1
batch_image = np.expand_dims(batch_image, axis=0)
output = sess.run(final_out, feed_dict={input_photo: batch_image})
output = (np.squeeze(output) + 1) * 127.5
output = np.clip(output, 0, 255).astype(np.uint8)
cv2.imwrite(outfile, output)
def main():
model_path = 'saved_model'
outfile = "result.jpg"
if os.path.exists(outfile):
os.system(f"rm -f {outfile}")
st.title('Cartoonify!')
infile = st.file_uploader("Choose an image file to cartoonify", type=["jpg", "jpeg"])
if infile is not None:
image = Image.open(infile)
#st.image(image, caption=f'Your image', use_column_width=True)
cartoonize(image, outfile, model_path)
omage = Image.open(outfile)
st.image(omage, caption=f'Cartoonized version: {outfile}')
if __name__ == "__main__":
main()
|