Spaces:
Sleeping
Sleeping
# app.py | |
# import pipelines | |
# import datasets | |
import os | |
if not os.getenv('HF_TOKEN'): | |
raise ValueError('HF_TOKEN must be set') | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from gradio import ChatMessage | |
MODEL = "meta-llama/Meta-Llama-3-8B-Instruct" | |
# PROMPT = "What is happiness?" | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
client = InferenceClient(MODEL, token=HF_TOKEN) | |
# inputs = [{"role": "user", "content": PROMPT}] | |
# output = client.chat_completion(messages, max_tokens=100) | |
# print(output.choices[0].message.content) | |
# print(output.model) | |
def interact_with_agent(prompt, messages): | |
messages.append(ChatMessage(role="user", content=prompt)) | |
yield messages | |
# for msg in stream_from_transformers_agent(agent, prompt): | |
for msg in client.chat_completion(messages, max_tokens=100): | |
messages.append(msg) | |
yield messages | |
yield messages | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
text_input = gr.Textbox(lines=1, label="Chat Message") | |
text_input.submit(interact_with_agent, [text_input, chatbot], [chatbot]) | |
if __name__ == "__main__": | |
demo.launch() | |