# app.py # import pipelines # import datasets import os if not os.getenv('HF_TOKEN'): raise ValueError('HF_TOKEN must be set') from huggingface_hub import InferenceClient import gradio as gr from gradio import ChatMessage MODEL = "meta-llama/Meta-Llama-3-8B-Instruct" # PROMPT = "What is happiness?" HF_TOKEN = os.getenv('HF_TOKEN') client = InferenceClient(MODEL, token=HF_TOKEN) # inputs = [{"role": "user", "content": PROMPT}] # output = client.chat_completion(messages, max_tokens=100) # print(output.choices[0].message.content) # print(output.model) def interact_with_agent(prompt, messages): messages.append(ChatMessage(role="user", content=prompt)) yield messages # for msg in stream_from_transformers_agent(agent, prompt): for msg in client.chat_completion(messages, max_tokens=100): messages.append(msg) yield messages yield messages with gr.Blocks() as demo: chatbot = gr.Chatbot(label="Agent", msg_format="messages", avatar_images=(None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png")) text_input = gr.Textbox(lines=1, label="Chat Message") text_input.submit(interact_with_agent, [text_input, chatbot], [chatbot]) if __name__ == "__main__": demo.launch()