multimodel_Ai / app.py
saranbalan's picture
Update app.py
df7ac0a verified
raw
history blame
3.51 kB
import whisper
import os
import gradio as gr
from groq import Groq
from deep_translator import GoogleTranslator
from diffusers import StableDiffusionPipeline
import torch
# Set up Groq API key
api_key = os.getenv("GROQ_API_KEY")
client = Groq(api_key=api_key)
# Set device: CUDA if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load Whisper model (if using locally, else use API as in original code)
# This is assuming you're using Whisper locally, if not, the client API is used.
whisper_model = whisper.load_model("base")
# Model IDs for Stable Diffusion pipelines
model_id1 = "dreamlike-art/dreamlike-diffusion-1.0"
model_id2 = "stabilityai/stable-diffusion-xl-base-1.0"
# Initialize Stable Diffusion pipeline based on device
if torch.cuda.is_available():
pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16)
else:
pipe = StableDiffusionPipeline.from_pretrained(model_id1) # Omit torch_dtype for CPU
# Move model to the selected device (either GPU or CPU)
pipe = pipe.to(device)
# Function to transcribe, translate, and analyze sentiment
def process_audio(audio_path, image_option):
if audio_path is None:
return "Please upload an audio file.", None, None, None
# Step 1: Transcribe audio
try:
with open(audio_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(os.path.basename(audio_path), file.read()),
model="whisper-large-v3",
language="ta",
response_format="verbose_json",
)
tamil_text = transcription.text
except Exception as e:
return f"An error occurred during transcription: {str(e)}", None, None, None
# Step 2: Translate Tamil to English
try:
translator = GoogleTranslator(source='ta', target='en')
translation = translator.translate(tamil_text)
except Exception as e:
return tamil_text, f"An error occurred during translation: {str(e)}", None, None
# Step 3: Generate image (if selected)
image = None
if image_option == "Generate Image":
try:
model_id1 = "dreamlike-art/dreamlike-diffusion-1.0"
pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
image = pipe(translation).images[0]
except Exception as e:
return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
return tamil_text, translation, image
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as iface:
gr.Markdown("# Audio Transcription, Translation, and Image Generation")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
image_option = gr.Dropdown(["Generate Image", "Skip Image"], label="Image Generation", value="Generate Image")
submit_button = gr.Button("Process Audio")
with gr.Column():
tamil_text_output = gr.Textbox(label="Tamil Transcription")
translation_output = gr.Textbox(label="English Translation")
image_output = gr.Image(label="Generated Image")
submit_button.click(
fn=process_audio,
inputs=[audio_input, image_option],
outputs=[tamil_text_output, translation_output, image_output]
)
# Launch the interface
iface.launch()