Spaces:
Sleeping
Sleeping
saranbalan
commited on
Commit
•
7318986
1
Parent(s):
64121ed
Update app.py
Browse files
app.py
CHANGED
@@ -5,26 +5,32 @@ from groq import Groq
|
|
5 |
from deep_translator import GoogleTranslator
|
6 |
from diffusers import StableDiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
-
#
|
10 |
-
api_key =
|
11 |
client = Groq(api_key=api_key)
|
12 |
|
|
|
|
|
|
|
|
|
13 |
# Set device: CUDA if available, else CPU
|
14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
|
16 |
# Load Whisper model (if using locally, else use API as in original code)
|
17 |
-
# This is assuming you're using Whisper locally, if not, the client API is used.
|
18 |
whisper_model = whisper.load_model("base")
|
19 |
|
20 |
# Model IDs for Stable Diffusion pipelines
|
21 |
-
|
|
|
|
|
22 |
|
23 |
# Initialize Stable Diffusion pipeline based on device
|
24 |
if torch.cuda.is_available():
|
25 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
26 |
else:
|
27 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
|
29 |
# Move model to the selected device (either GPU or CPU)
|
30 |
pipe = pipe.to(device)
|
@@ -58,12 +64,12 @@ def process_audio(audio_path, image_option):
|
|
58 |
image = None
|
59 |
if image_option == "Generate Image":
|
60 |
try:
|
61 |
-
|
62 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
63 |
-
pipe = pipe.to(
|
64 |
image = pipe(translation).images[0]
|
65 |
except Exception as e:
|
66 |
-
return tamil_text, translation, f"An error occurred during image generation: {str(e)}"
|
67 |
|
68 |
return tamil_text, translation, image
|
69 |
|
|
|
5 |
from deep_translator import GoogleTranslator
|
6 |
from diffusers import StableDiffusionPipeline
|
7 |
import torch
|
8 |
+
import huggingface_hub
|
9 |
|
10 |
+
# Replace with your actual Groq API key
|
11 |
+
api_key = "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"
|
12 |
client = Groq(api_key=api_key)
|
13 |
|
14 |
+
# Set Hugging Face API key
|
15 |
+
HF_API_KEY = "https://huggingface.co/ByteDance/SDXL-Lightning/resolve/main/sdxl_lightning_1step_x0.safetensors"
|
16 |
+
huggingface_hub.login(HF_API_KEY)
|
17 |
+
|
18 |
# Set device: CUDA if available, else CPU
|
19 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
|
21 |
# Load Whisper model (if using locally, else use API as in original code)
|
|
|
22 |
whisper_model = whisper.load_model("base")
|
23 |
|
24 |
# Model IDs for Stable Diffusion pipelines
|
25 |
+
model_id1 = "dreamlike-art/dreamlike-diffusion-1.0"
|
26 |
+
model_id2 = "stabilityai/stable-diffusion-xl-base-1.0"
|
27 |
+
restricted_model_id = "ByteDance/SDXL-Lightning" # Model you want to access using HF_API_KEY
|
28 |
|
29 |
# Initialize Stable Diffusion pipeline based on device
|
30 |
if torch.cuda.is_available():
|
31 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id2, torch_dtype=torch.float16)
|
32 |
else:
|
33 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id2) # Omit torch_dtype for CPU
|
34 |
|
35 |
# Move model to the selected device (either GPU or CPU)
|
36 |
pipe = pipe.to(device)
|
|
|
64 |
image = None
|
65 |
if image_option == "Generate Image":
|
66 |
try:
|
67 |
+
# Use the Hugging Face API key to load the restricted model for image generation
|
68 |
+
pipe = StableDiffusionPipeline.from_pretrained(restricted_model_id, torch_dtype=torch.float16, use_auth_token=HF_API_KEY)
|
69 |
+
pipe = pipe.to(device)
|
70 |
image = pipe(translation).images[0]
|
71 |
except Exception as e:
|
72 |
+
return tamil_text, translation, f"An error occurred during image generation: {str(e)}", None
|
73 |
|
74 |
return tamil_text, translation, image
|
75 |
|