import whisper import gradio as gr from groq import Groq from deep_translator import GoogleTranslator from diffusers import StableDiffusionPipeline import os import torch import openai # # Replace with your OpenAI API key # openai.api_key = "https://huggingface.co/EleutherAI/gpt-neo-2.7B/resolve/main/model.safetensors" # Set up Groq API key api_key = os.getenv("GROQ_API_KEY") client = Groq(api_key=api_key) # Retrieve Hugging Face API key from environment variable HF_API_KEY = os.getenv("HF_API_KEY") if HF_API_KEY is None: raise ValueError("Hugging Face API key not found. Please set it as an environment variable.") # Login to Hugging Face try: login(HF_API_KEY) print("Login successful!") except Exception as e: print(f"Error during Hugging Face login: {str(e)}") # Set device: CUDA if available, else CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_id1 = "dreamlike-art/dreamlike-diffusion-1.0" pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True) pipe = pipe.to("device") # Updated function for text generation using the new API structure def generate_creative_text(prompt): try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", # Change this to the model you prefer, e.g., "gpt-4" if available messages=[ {"role": "system", "content": "You are a creative assistant."}, {"role": "user", "content": prompt} ], max_tokens=1024, temperature=0.7, ) return response['choices'][0]['message']['content'].strip() except Exception as e: return f"An error occurred during text generation: {str(e)}" def process_audio(audio_path, image_option, creative_text_option): if audio_path is None: return "Please upload an audio file.", None, None, None # Step 1: Transcribe audio try: with open(audio_path, "rb") as file: transcription = client.audio.transcriptions.create( file=(os.path.basename(audio_path), file.read()), model="whisper-large-v3", language="ta", response_format="verbose_json", ) tamil_text = transcription.text except Exception as e: return f"An error occurred during transcription: {str(e)}", None, None, None # Step 2: Translate Tamil to English try: translator = GoogleTranslator(source='ta', target='en') translation = translator.translate(tamil_text) except Exception as e: return tamil_text, f"An error occurred during translation: {str(e)}", None, None # Step 3: Generate creative text (if selected) creative_text = None if creative_text_option == "Generate Creative Text": creative_text = generate_creative_text(translation) # Step 4: Generate image (if selected) image = None if image_option == "Generate Image": try: model_id1 = "dreamlike-art/dreamlike-diffusion-1.0" pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True) pipe = pipe.to("device") image = pipe(translation).images[0] except Exception as e: return tamil_text, translation, creative_text, f"An error occurred during image generation: {str(e)}" return tamil_text, translation, creative_text, image # Create Gradio interface with gr.Blocks(theme=gr.themes.Base()) as iface: gr.Markdown("# Audio Transcription, Translation, Image & Creative Text Generation") with gr.Row(): with gr.Column(): audio_input = gr.Audio(type="filepath", label="Upload Audio File") image_option = gr.Dropdown(["Generate Image", "Skip Image"], label="Image Generation", value="Generate Image") creative_text_option = gr.Dropdown(["Generate Creative Text", "Skip Creative Text"], label="Creative Text Generation", value="Generate Creative Text") submit_button = gr.Button("Process Audio") with gr.Column(): tamil_text_output = gr.Textbox(label="Tamil Transcription") translation_output = gr.Textbox(label="English Translation") creative_text_output = gr.Textbox(label="Creative Text") image_output = gr.Image(label="Generated Image") submit_button.click( fn=process_audio, inputs=[audio_input, image_option, creative_text_option], outputs=[tamil_text_output, translation_output, creative_text_output, image_output] ) # Launch the interface iface.launch()