import streamlit as st import numpy as np import pandas as pd from PIL import Image import io import cv2 as cv import pytesseract min_size_of_cell = st.sidebar.slider('Min. size of Cell', 1, 50000, 5000) st.sidebar.write("Adjust this setting so that no text gets selected and not too large that any cell will be missed.") table_contour_factor = st.sidebar.slider('Table Contour Factor', 1, 100, 10) st.sidebar.write("Adjust this setting so that the border of entire table / image is not selected. Also not too large that any cell will be missed.") if 'significant_contour_list' not in st.session_state: st.session_state.significant_contour_list = [] if 'imgray' not in st.session_state: st.session_state.imgray = 0 if 'df' not in st.session_state: st.session_state.df = pd.DataFrame() def remove_newline_char(a): if a == "": return "" if str(a) == "NaN": return "" if a[-1] == '\n': return a[:-1] return a def convert_DF_to_csv(df): s = "" for i in range(0,df.shape[0]): for j in range(0,df.shape[1]): if j == df.shape[1] - 1: s = s + str(df.iloc[i,j]) else: s = s + str(df.iloc[i,j]) + "," s = s + '\n' return s def runalgo(): # now for easy of computing and establishing regions for text mining each signifiant contour, their respective bounding rectangular boxes are found. significant_contour_list = st.session_state.significant_contour_list significant_contour_rect_details = [] imgray = st.session_state.imgray for i in range(0,len(significant_contour_list)): significant_contour_rect_details.append(cv.boundingRect(significant_contour_list[i])) # the center of each rect for each cell is computed to further easy in sorting and finding the order of cells. significant_contour_rect_center = [] for i in range(0,len(significant_contour_rect_details)): significant_contour_rect_center.append((significant_contour_rect_details[i][0] + significant_contour_rect_details[i][2] / 2, significant_contour_rect_details[i][1] + significant_contour_rect_details[i][3] / 2, i)) # since the order of contours can be different and the exact no. of rows and columns are always unclear # 1. the contour with least y value is found # 2. then the header row is figured out by comparing the y value of each cell with the least y value # 3. still the header row may not be in a correct sequence hence they are ordered by x value to represent the header row of a flat table. unordered_header_rows = [] min_y = 1000000.0 min_index = 0 for i in range(0,len(significant_contour_rect_center)): if min_y >= significant_contour_rect_center[i][1]: min_y = significant_contour_rect_center[i][1] min_index = i for i in range(0,len(significant_contour_rect_center)): if abs(min_y - significant_contour_rect_center[i][1]) <= 5: unordered_header_rows.append(i) header_rows_x_values_unordered = [] for i in range(0,len(unordered_header_rows)): header_rows_x_values_unordered.append(significant_contour_rect_center[unordered_header_rows[i]][0]) header_rows_x_values_index = np.argsort(header_rows_x_values_unordered) header_rows_index = [] for i in range(0,len(header_rows_x_values_index)): header_rows_index.append(unordered_header_rows[header_rows_x_values_index[i]]) # now from ordered header row cells the remaining cells that are vertically below are found out and then they are ordered by y value. table_cells_index = [] for i in header_rows_index: table_cells_index.append([i]) for i in range(0,len(header_rows_index)): for j in range(0,len(significant_contour_rect_center)): if abs(significant_contour_rect_center[j][0] - significant_contour_rect_center[header_rows_index[i]][0]) <= 5 and j != header_rows_index[i]: table_cells_index[i].append(j) for i in range(0,len(header_rows_index)): a = list(table_cells_index[i][1:]) col_y = [] for j in a: col_y.append(significant_contour_rect_center[j][1]) col_y_index = np.argsort(col_y) col_y_index = col_y_index b = [] for j in col_y_index: b.append(a[j]) table_cells_index[i] = [header_rows_index[i]] + b # for ech cell tesseract is used to extract the text and stored in a 2d list. pytesseract.pytesseract.tesseract_cmd = "/opt/homebrew/Cellar/tesseract/5.3.0_1/bin/tesseract" #this is must for macOS M1 table_contents = [] for i in range(0,len(table_cells_index)): a = [] for j in table_cells_index[i]: y = significant_contour_rect_details[j][1] h = significant_contour_rect_details[j][3] x = significant_contour_rect_details[j][0] w = significant_contour_rect_details[j][2] cropped = imgray[y:y + h, x:x + w] text = pytesseract.image_to_string(cropped) a.append(text) table_contents.append(a) df = pd.DataFrame(table_contents) df = df.transpose() # since the data is column wise we have to apply transpose to convert to a flat table. # some preprocessing is required like removing new line character at the last for each cell in the dataframe. for i in range(0,len(df.columns)): df[i] = df.apply(lambda x: remove_newline_char(x[i]),axis = 1) st.session_state.df = df def contour_area(a): return cv.contourArea(a) def setCountours(img_bytes): imgray = cv.cvtColor(img_bytes, cv.COLOR_BGR2GRAY) st.session_state.imgray = imgray ret, thresh = cv.threshold(imgray, 127, 255, 0) contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) # creating a list of areas by each contour contour_area_list = [] for i in range(0,len(contours)): contour_area_list.append(contour_area(contours[i])) contour_area_list = np.array(contour_area_list) # finding only significant_counters -- here the area is used as metric to eliminate text contours and other small regions significant_contour_list = [] max_contour_area = max(contour_area_list) for i in range(0,len(contours)): # here it is assumed that each cell int able be atleast 800 sq. pixels # there is always a possiblity of non exact crop of image hence there will always be atleast 1 large contour around the table border. if contour_area_list[i] > min_size_of_cell and contour_area_list[i] < max_contour_area / table_contour_factor: significant_contour_list.append(contours[i]) significant_contour_list = np.array(significant_contour_list) st.session_state.significant_contour_list = significant_contour_list im_contours_significant = img_bytes.copy() im_contours_significant = cv.drawContours(im_contours_significant, significant_contour_list, -1, (0,255,0), 3) # the contours are set to be visible in green img = cv.cvtColor(im_contours_significant, cv.COLOR_BGR2RGB) im_pil = Image.fromarray(img) return im_pil def convertImg(img): nparr = np.array(img.convert('RGB')) return nparr[:, :, ::-1].copy() st.title("Table from Image using opencv") image = Image.open('/Users/sarat/Desktop/Projects/Python/Table with data extraction/sports_data.png') image_contoured = setCountours(convertImg(image)) info_placeholder = st.empty() # tab1, tab2 = st.tabs(["Data","Contoured Image"]) # upload_image_button = st.button("Upload Image") uploaded_file = st.file_uploader("Upload Image",type=['png']) if uploaded_file is not None: bytes_data = uploaded_file.getvalue() image = Image.open(io.BytesIO(bytes_data)) image_contoured = setCountours(convertImg(image)) st.sidebar.header("Original Image") st.sidebar.image(image) col_b_1, col_b_2 = st.columns(2) with col_b_1: st.button("Convert",on_click=runalgo) with col_b_2: st.download_button('Download CSV', convert_DF_to_csv(st.session_state.df), file_name='data.csv') col1, col2 = st.columns(2) with col2: if st.session_state.df.shape[0] != 0: st.header("Data") st.dataframe(st.session_state.df) with col1: st.header("Image with Contours") st.image(image_contoured)