from typing import Union from fastapi import FastAPI,File from PIL import Image from io import BytesIO from transformers import DetrImageProcessor, DetrForObjectDetection import torch import requests app = FastAPI(title="Object Detection", docs_url="/", description="Object detection in Image") processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") @app.post('/image') def read_image(image_file: bytes = File(...)): image = Image.open(BytesIO(image_file)) # url = "http://images.cocodataset.org/val2017/000000039769.jpg" # image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") print("image loaded") outputs = model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] print("results pushed") response = {} for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] # response['scores'] = model.config.id2label[label.item()] # response['labels'] = score.item() # response['boxes'] = box print(model.config.id2label[label.item()]) print(score.item()) print(box) # print( # f"Detected {model.config.id2label[label.item()]} with confidence " # f"{round(score.item(), 3)} at location {box}" # ) return response