app
Browse files<audio controls src="https://cdn-uploads.huggingface.co/production/uploads/6586f45c65df457a558c1a24/ZQ0AmeGvvtVf02fGsHMuW.mpga"></audio>
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, render_template
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
from torchvision import models
|
7 |
+
from scipy.ndimage import zoom
|
8 |
+
from sklearn.decomposition import PCA
|
9 |
+
import joblib
|
10 |
+
from keras.utils import to_categorical
|
11 |
+
|
12 |
+
# Assuming you already have the 'ann_model' trained and 'pca' instance from the previous code
|
13 |
+
language_mapping = {'malayalam': 0, 'english': 1, 'tamil': 2,'hindi':3,'kannada':4,'telugu':5}
|
14 |
+
|
15 |
+
app = Flask(__name__)
|
16 |
+
|
17 |
+
# Load the trained model and PCA instance
|
18 |
+
ann_model = torch.load('ann_model.pth')
|
19 |
+
pca = joblib.load('pca.pkl')
|
20 |
+
|
21 |
+
# Load VGG16 model
|
22 |
+
vgg16 = models.vgg16(pretrained=True).features
|
23 |
+
def preprocess_single_audio_vgg16(audio_file, vgg16_model, pca_instance):
|
24 |
+
# Load and preprocess the audio file
|
25 |
+
y, sr = librosa.load(audio_file, sr=None) # Load audio
|
26 |
+
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128) # Compute Mel spectrogram
|
27 |
+
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) # Apply log transformation
|
28 |
+
norm_mel_spec = (log_mel_spec - np.mean(log_mel_spec)) / np.std(log_mel_spec) # Normalize
|
29 |
+
|
30 |
+
# Resize mel spectrogram to the target shape (128, 128) using zoom
|
31 |
+
target_shape = (128, 128)
|
32 |
+
resized_mel_spec = zoom(norm_mel_spec, (target_shape[0] / norm_mel_spec.shape[0], target_shape[1] / norm_mel_spec.shape[1]), mode='nearest')
|
33 |
+
|
34 |
+
# Stack the resized mel spectrogram along the third axis to create 3 channels
|
35 |
+
mel_spec_rgb = np.stack([resized_mel_spec] * 3, axis=-1)
|
36 |
+
|
37 |
+
# Convert the preprocessed audio data into a format suitable for the VGG16 model
|
38 |
+
mel_spec_tensor = torch.from_numpy(mel_spec_rgb).permute(2, 0, 1).unsqueeze(0).float() # Add batch dimension and change channel order
|
39 |
+
|
40 |
+
# Extract features using VGG16
|
41 |
+
vgg16_model.eval()
|
42 |
+
with torch.no_grad():
|
43 |
+
features = vgg16_model(mel_spec_tensor)
|
44 |
+
|
45 |
+
# Convert the features to numpy array and flatten them
|
46 |
+
features_np = features.squeeze().detach().numpy()
|
47 |
+
features_flattened = features_np.flatten().reshape(1, -1)
|
48 |
+
|
49 |
+
# Apply PCA transformation
|
50 |
+
features_pca = pca_instance.transform(features_flattened)
|
51 |
+
|
52 |
+
# Convert to PyTorch tensor
|
53 |
+
features_tensor = torch.from_numpy(features_pca).float()
|
54 |
+
|
55 |
+
return features_tensor
|
56 |
+
|
57 |
+
|
58 |
+
@app.route('/')
|
59 |
+
def home():
|
60 |
+
return render_template('index.html')
|
61 |
+
|
62 |
+
@app.route('/predict', methods=['POST'])
|
63 |
+
def predict():
|
64 |
+
try:
|
65 |
+
# Get the audio file from the request
|
66 |
+
audio_file = request.files['file']
|
67 |
+
audio_file.save('temp.wav')
|
68 |
+
audio_file_path = 'temp.wav'
|
69 |
+
# Preprocess the audio file
|
70 |
+
preprocessed_features = preprocess_single_audio_vgg16(audio_file_path, vgg16, pca)
|
71 |
+
|
72 |
+
# Make a prediction
|
73 |
+
ann_model.eval()
|
74 |
+
with torch.no_grad():
|
75 |
+
output = ann_model(preprocessed_features)
|
76 |
+
_, predicted_class = torch.max(output, 1)
|
77 |
+
|
78 |
+
# Map predicted class index to actual label
|
79 |
+
predicted_label = {v: k for k, v in language_mapping.items()}[predicted_class.item()]
|
80 |
+
|
81 |
+
# Delete the temporary audio file
|
82 |
+
os.remove('temp.wav')
|
83 |
+
|
84 |
+
# Return the prediction
|
85 |
+
return jsonify({'prediction': predicted_label})
|
86 |
+
except KeyError:
|
87 |
+
return jsonify({'error': 'Audio file not found in the request'}), 400
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return jsonify({'error': str(e)}), 500
|
91 |
+
if __name__ == '__main__':
|
92 |
+
app.run(host='0.0.0.0', port=8000)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
# Assuming you already have the 'ann_model' trained and 'pca' instance from the previous code
|
99 |
+
|
100 |
+
# Function to load and preprocess a single audio file
|
101 |
+
|
102 |
+
# Load VGG16 model
|
103 |
+
|