Spaces:
Running
Running
from random import sample | |
import gradio as gr | |
import torchaudio | |
import torch | |
import torch.nn as nn | |
import lightning_module | |
class ChangeSampleRate(nn.Module): | |
def __init__(self, input_rate: int, output_rate: int): | |
super().__init__() | |
self.output_rate = output_rate | |
self.input_rate = input_rate | |
def forward(self, wav: torch.tensor) -> torch.tensor: | |
# Only accepts 1-channel waveform input | |
wav = wav.view(wav.size(0), -1) | |
new_length = wav.size(-1) * self.output_rate // self.input_rate | |
indices = (torch.arange(new_length) * (self.input_rate / self.output_rate)) | |
round_down = wav[:, indices.long()] | |
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)] | |
output = round_down * (1. - indices.fmod(1.)).unsqueeze(0) + round_up * indices.fmod(1.).unsqueeze(0) | |
return output | |
model = lightning_module.BaselineLightningModule.load_from_checkpoint("epoch=3-step=7459.ckpt").eval() | |
def calc_mos(audio_path): | |
wav, sr = torchaudio.load(audio_path) | |
osr = 16_000 | |
batch = wav.unsqueeze(0).repeat(10, 1, 1) | |
csr = ChangeSampleRate(sr, osr) | |
out_wavs = csr(wav) | |
batch = { | |
'wav': out_wavs, | |
'domains': torch.tensor([0]), | |
'judge_id': torch.tensor([288]) | |
} | |
with torch.no_grad(): | |
output = model(batch) | |
return output.mean(dim=1).squeeze().detach().numpy()*2 + 3 | |
description =""" | |
MOS prediction demo using UTMOS-strong w/o phoneme encoder model, which is trained on the main track dataset. | |
This demo only accepts .wav format. Best at 16 kHz sampling rate. | |
Paper is available [here](https://arxiv.org/abs/2204.02152) | |
""" | |
iface = gr.Interface( | |
fn=calc_mos, | |
inputs=gr.inputs.Audio(type='filepath'), | |
outputs="text", | |
title="UTMOS Demo", | |
description=description, | |
allow_flagging=False, | |
).launch() |