File size: 39,841 Bytes
1873a9f
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
 
 
 
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ab948
1873a9f
a1ab948
1873a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## All package installation and libraries imports\n",
    "### Packages installation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true,
    "id": "rd5vZMt_2wrC"
   },
   "outputs": [],
   "source": [
    "#run this cell \n",
    "!pip install accelerate\n",
    "!pip install bitsandbytes\n",
    "!pip install optimum\n",
    "!pip install auto-gptq\n",
    "!pip install gradio\n",
    "\n",
    "#text-to-speech and speech to text\n",
    "!pip install TTS\n",
    "!pip install 'transformers == 4.36'\n",
    "!pip install numpy\n",
    "!pip install openai-whisper #Whisper models\n",
    "\n",
    "!pip install geopy\n",
    "\n",
    "!pip uninstall transformer-engine -y\n",
    "\n",
    "\n",
    "!pip install langchain\n",
    "!pip install text_generation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### libraries import"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true,
    "id": "oOnNfKjX4IAV"
   },
   "outputs": [],
   "source": [
    "#gradio interface\n",
    "import gradio as gr\n",
    "\n",
    "from transformers import AutoModelForCausalLM,AutoTokenizer\n",
    "import torch\n",
    "\n",
    "#STT (speech to text)\n",
    "from transformers import WhisperProcessor, WhisperForConditionalGeneration\n",
    "import librosa\n",
    "\n",
    "#TTS (text to speech)\n",
    "import torch\n",
    "from TTS.api import TTS\n",
    "from IPython.display import Audio\n",
    "\n",
    "#json request for APIs\n",
    "import requests\n",
    "import json\n",
    "\n",
    "#regular expressions\n",
    "import re\n",
    "\n",
    "#langchain and function calling\n",
    "from typing import List, Literal, Union\n",
    "import requests\n",
    "from functools import partial\n",
    "from geopy.geocoders import Nominatim\n",
    "import math\n",
    "\n",
    "\n",
    "#langchain, not used anymore since I had to find another way fast to stop using the endpoint, but could be interesting to reuse \n",
    "from langchain.tools.base import StructuredTool\n",
    "from langchain.agents import (\n",
    "    Tool,\n",
    "    AgentExecutor,\n",
    "    LLMSingleActionAgent,\n",
    "    AgentOutputParser,\n",
    ")\n",
    "from langchain.schema import AgentAction, AgentFinish, OutputParserException\n",
    "from langchain.prompts import StringPromptTemplate\n",
    "from langchain.llms import HuggingFaceTextGenInference\n",
    "from langchain.chains import LLMChain\n",
    "\n",
    "\n",
    "\n",
    "from datetime import datetime, timedelta, timezone\n",
    "from transformers import pipeline\n",
    "import inspect"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Models loads"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true,
    "id": "JNALTDb0LT90"
   },
   "outputs": [],
   "source": [
    "# load model and processor for speech-to-text\n",
    "processor = WhisperProcessor.from_pretrained(\"openai/whisper-small\")\n",
    "modelw = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-small\")\n",
    "modelw.config.forced_decoder_ids = None\n",
    "\n",
    "#load model for text to speech\n",
    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
    "tts = TTS(\"tts_models/multilingual/multi-dataset/xtts_v1.1\").to(device)\n",
    "\n",
    "#load model language recognition\n",
    "model_ckpt = \"papluca/xlm-roberta-base-language-detection\"\n",
    "pipe_language = pipeline(\"text-classification\", model=model_ckpt)\n",
    "\n",
    "#load model llama2\n",
    "mn = 'stabilityai/StableBeluga-7B' #mn = \"TheBloke/Llama-2-7b-Chat-GPTQ\" --> other possibility \n",
    "model = AutoModelForCausalLM.from_pretrained(mn, device_map=0, load_in_4bit=True) #torch_dtype=torch.float16\n",
    "tokr = AutoTokenizer.from_pretrained(mn, load_in_4bit=True) #tokenizer\n",
    "\n",
    "#NexusRaven for function calling\n",
    "model_id = \"Nexusflow/NexusRaven-13B\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
    "modelNexus = AutoModelForCausalLM.from_pretrained(model_id, device_map=0, load_in_4bit=True)\n",
    "pipe = pipeline(\"text-generation\", model=modelNexus, tokenizer = tokenizer)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Function calling with NexusRaven "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#FUNCTION CALLING \n",
    "\n",
    "#API keys\n",
    "TOMTOM_KEY= \"your_key\" \n",
    "WHEATHER_API_KEY = \"your_key\" \n",
    "\n",
    "##########################################################\n",
    "# Step 1: Define the functions you want to articulate. ###\n",
    "##########################################################\n",
    "\n",
    "########################################################################################\n",
    "# Functions called  in the articulated functions (not directly called by the model): ###\n",
    "########################################################################################\n",
    "\n",
    "geolocator = Nominatim(user_agent=\"MyApp\")\n",
    "\n",
    "def find_precise_place(lat, lon):\n",
    "    location = geolocator.reverse(str(lat) +\", \" + str(lon))\n",
    "    return location.raw.get('display_name', {})\n",
    "\n",
    "def find_coordinates(address):\n",
    "    coord = geolocator.geocode(address)\n",
    "    lat = coord.latitude\n",
    "    lon = coord.longitude\n",
    "    return(lat,lon)\n",
    "\n",
    "\n",
    "def check_city_coordinates(lat = \"\", lon = \"\", city = \"\", **kwargs):\n",
    "    \"\"\"\n",
    "    :param lat: latitude\n",
    "    :param lon: longitude\n",
    "    :param city: name of the city\n",
    "\n",
    "    Checks if the coordinates correspond to the city, if not update the coordinate to correspond to the city\n",
    "    \"\"\"\n",
    "    if lat != \"0\" and lon != \"0\":\n",
    "        reverse = partial(geolocator.reverse, language=\"en\")\n",
    "        location = reverse(f\"{lat}, {lon}\")\n",
    "        address = location.raw.get('address', {})\n",
    "        city = address.get('city') or address.get('town') or address.get('village') or address.get('county')\n",
    "    else : \n",
    "        reverse = partial(geolocator.reverse, language=\"en\")\n",
    "        location = reverse(f\"{lat}, {lon}\")\n",
    "        address = location.raw.get('address', {})\n",
    "        city_name = address.get('city') or address.get('town') or address.get('village') or address.get('county')\n",
    "        if city_name is None :\n",
    "            city_name = 'not_found'\n",
    "        print(city_name)\n",
    "        if city_name.lower() != city.lower():\n",
    "            coord = geolocator.geocode(city )\n",
    "            if coord is None:\n",
    "                coord = geolocator.geocode(city)\n",
    "            lat = coord.latitude\n",
    "            lon = coord.longitude\n",
    "    return lat, lon, city\n",
    "\n",
    "# Select coordinates at equal distance, including the last one\n",
    "def select_equally_spaced_coordinates(coords, number_of_points=10):\n",
    "    n = len(coords)\n",
    "    selected_coords = []\n",
    "    interval = max((n - 1) / (number_of_points - 1), 1)\n",
    "    for i in range(number_of_points):\n",
    "        # Calculate the index, ensuring it doesn't exceed the bounds of the list\n",
    "        index = int(round(i * interval))\n",
    "        if index < n:\n",
    "            selected_coords.append(coords[index])\n",
    "    return selected_coords\n",
    "\n",
    "###################################################\n",
    "# Functions we want to articulate (APIs calls): ###\n",
    "###################################################\n",
    "\n",
    "def search_along_route(latitude_depart, longitude_depart, city_destination, type_of_poi):\n",
    "    \"\"\"\n",
    "    Return some of the closest points of interest along the route from the depart point, specified by its coordinates and a city destination.\n",
    "    :param latitude_depart (string):  Required. Latitude of depart location\n",
    "    :param longitude_depart (string):  Required. Longitude of depart location\n",
    "    :param city_destination (string): Required. City destination\n",
    "    :param type_of_poi (string): Required. type of point of interest depending on what the user wants to do.\n",
    "    \"\"\"\n",
    "    \n",
    "    lat_dest, lon_dest = find_coordinates(city_destination)\n",
    "    print(lat_dest)\n",
    "    \n",
    "    r = requests.get('https://api.tomtom.com/routing/1/calculateRoute/{0},{1}:{2},{3}/json?key={4}'.format(\n",
    "                        latitude_depart,\n",
    "                        longitude_depart,\n",
    "                        lat_dest,\n",
    "                        lon_dest,\n",
    "                        TOMTOM_KEY\n",
    "    ))\n",
    "    \n",
    "    coord_route = select_equally_spaced_coordinates(r.json()['routes'][0]['legs'][0]['points'])\n",
    "\n",
    "    # The API endpoint for searching along a route\n",
    "    url = f'https://api.tomtom.com/search/2/searchAlongRoute/{type_of_poi}.json?key={TOMTOM_KEY}&maxDetourTime=700&limit=20&sortBy=detourTime'\n",
    "\n",
    "    # The data payload\n",
    "    payload = {\n",
    "      \"route\": {\n",
    "        \"points\": [\n",
    "          {\"lat\": float(latitude_depart), \"lon\": float(longitude_depart)},\n",
    "          {\"lat\": float(coord_route[1]['latitude']), \"lon\": float(coord_route[1]['longitude'])},\n",
    "          {\"lat\": float(coord_route[2]['latitude']), \"lon\": float(coord_route[2]['longitude'])},\n",
    "          {\"lat\": float(coord_route[3]['latitude']), \"lon\": float(coord_route[3]['longitude'])},\n",
    "          {\"lat\": float(coord_route[4]['latitude']), \"lon\": float(coord_route[4]['longitude'])},\n",
    "          {\"lat\": float(coord_route[5]['latitude']), \"lon\": float(coord_route[5]['longitude'])},\n",
    "          {\"lat\": float(coord_route[6]['latitude']), \"lon\": float(coord_route[6]['longitude'])},\n",
    "          {\"lat\": float(coord_route[7]['latitude']), \"lon\": float(coord_route[7]['longitude'])},\n",
    "          {\"lat\": float(coord_route[8]['latitude']), \"lon\": float(coord_route[8]['longitude'])},\n",
    "          {\"lat\": float(lat_dest), \"lon\": float(lon_dest)},\n",
    "        ]\n",
    "      }\n",
    "    }\n",
    "\n",
    "    # Make the POST request\n",
    "    response = requests.post(url, json=payload)\n",
    "\n",
    "    # Check if the request was successful\n",
    "    if response.status_code == 200:\n",
    "        # Parse the JSON response\n",
    "        data = response.json()\n",
    "        print(json.dumps(data, indent=4))\n",
    "    else:\n",
    "        print('Failed to retrieve data:', response.status_code)\n",
    "    answer = \"\"\n",
    "    for result in data['results']:\n",
    "        name = result['poi']['name']\n",
    "        address = result['address']['freeformAddress']\n",
    "        detour_time = result['detourTime']\n",
    "        answer = answer + f\" \\nAlong the route to {city_destination}, there is the {name} at {address} that would represent a detour of {int(detour_time/60)} minutes.\"\n",
    "        \n",
    "    return answer\n",
    "\n",
    "\n",
    "def find_points_of_interest(lat=\"0\", lon=\"0\", city=\"\", type_of_poi=\"restaurant\", **kwargs):\n",
    "    \"\"\"\n",
    "    Return some of the closest points of interest for a specific location and type of point of interest. The more parameters there are, the more precise.\n",
    "    :param lat (string):  latitude\n",
    "    :param lon (string):  longitude\n",
    "    :param city (string): Required. city\n",
    "    :param type_of_poi (string): Required. type of point of interest depending on what the user wants to do.\n",
    "    \"\"\"\n",
    "    lat, lon, city = check_city_coordinates(lat,lon,city)\n",
    "\n",
    "    r = requests.get(f'https://api.tomtom.com/search/2/search/{type_of_poi}'\n",
    "                     '.json?key={0}&lat={1}&lon={2}&radius=10000&idxSet=POI&limit=100'.format(\n",
    "                        TOMTOM_KEY,\n",
    "                        lat,\n",
    "                        lon\n",
    "    ))\n",
    "\n",
    "    # Parse JSON from the response\n",
    "    data = r.json()\n",
    "    #print(data)\n",
    "    # Extract results\n",
    "    results = data['results']\n",
    "\n",
    "    # Sort the results based on distance\n",
    "    sorted_results = sorted(results, key=lambda x: x['dist'])\n",
    "    #print(sorted_results)\n",
    "\n",
    "    # Format and limit to top 5 results\n",
    "    formatted_results = [\n",
    "        f\"The {type_of_poi} {result['poi']['name']} is {int(result['dist'])} meters away\"\n",
    "        for result in sorted_results[:5]\n",
    "    ]\n",
    "\n",
    "\n",
    "    return \". \".join(formatted_results)\n",
    "\n",
    "def find_route(lat_depart=\"0\", lon_depart=\"0\", city_depart=\"\", address_destination=\"\", depart_time =\"\", **kwargs):\n",
    "    \"\"\"\n",
    "    Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
    "    :param lat_depart (string):  latitude of depart\n",
    "    :param lon_depart (string):  longitude of depart\n",
    "    :param city_depart (string): Required. city of depart\n",
    "    :param address_destination (string): Required. The destination\n",
    "    :param depart_time (string):  departure hour, in the format '08:00:20'.\n",
    "    \"\"\"\n",
    "    print(address_destination)\n",
    "    date = \"2025-03-29T\"\n",
    "    departure_time = '2024-02-01T' + depart_time\n",
    "    lat, lon, city = check_city_coordinates(lat_depart,lon_depart,city_depart)\n",
    "    lat_dest, lon_dest = find_coordinates(address_destination)\n",
    "    #print(lat_dest, lon_dest)\n",
    "    \n",
    "    #print(departure_time)\n",
    "\n",
    "    r = requests.get('https://api.tomtom.com/routing/1/calculateRoute/{0},{1}:{2},{3}/json?key={4}&departAt={5}'.format(\n",
    "                        lat_depart,\n",
    "                        lon_depart,\n",
    "                        lat_dest,\n",
    "                        lon_dest,\n",
    "                        TOMTOM_KEY,\n",
    "                        departure_time\n",
    "    ))\n",
    "\n",
    "    # Parse JSON from the response\n",
    "    data = r.json()\n",
    "    #print(data)\n",
    "    \n",
    "    #print(data)\n",
    "    \n",
    "    result = data['routes'][0]['summary']\n",
    "\n",
    "    # Calculate distance in kilometers (1 meter = 0.001 kilometers)\n",
    "    distance_km = result['lengthInMeters'] * 0.001\n",
    "\n",
    "    # Calculate travel time in minutes (1 second = 1/60 minutes)\n",
    "    time_minutes = result['travelTimeInSeconds'] / 60\n",
    "    if time_minutes < 60:\n",
    "        time_display = f\"{time_minutes:.0f} minutes\"\n",
    "    else:\n",
    "        hours = int(time_minutes / 60)\n",
    "        minutes = int(time_minutes % 60)\n",
    "        time_display = f\"{hours} hours\" + (f\" and {minutes} minutes\" if minutes > 0 else \"\")\n",
    "        \n",
    "    # Extract arrival time from the JSON structure\n",
    "    arrival_time_str = result['arrivalTime']\n",
    "\n",
    "    # Convert string to datetime object\n",
    "    arrival_time = datetime.fromisoformat(arrival_time_str)\n",
    "\n",
    "    # Extract and display the arrival hour in HH:MM format\n",
    "    arrival_hour_display = arrival_time.strftime(\"%H:%M\")\n",
    "\n",
    "\n",
    "    # return the distance and time\n",
    "    return(f\"The route to go to {address_destination} is {distance_km:.2f} km and {time_display}. Leaving now, the arrival time is estimated at {arrival_hour_display} \" )\n",
    "\n",
    "    \n",
    "    # Sort the results based on distance\n",
    "    #sorted_results = sorted(results, key=lambda x: x['dist'])\n",
    "\n",
    "    #return \". \".join(formatted_results)\n",
    "\n",
    "#current weather API\n",
    "def get_weather(city_name:str= \"\", **kwargs):\n",
    "    \"\"\"\n",
    "    Returns the CURRENT weather in a specified city.\n",
    "    Args:\n",
    "    city_name (string) : Required. The name of the city.\n",
    "    \"\"\"\n",
    "    # The endpoint URL provided by WeatherAPI\n",
    "    url = f\"http://api.weatherapi.com/v1/current.json?key={WEATHER_API_KEY}&q={city_name}&aqi=no\"\n",
    "\n",
    "    # Make the API request\n",
    "    response = requests.get(url)\n",
    "\n",
    "    if response.status_code == 200:\n",
    "        # Parse the JSON response\n",
    "        weather_data = response.json()\n",
    "\n",
    "        # Extracting the necessary pieces of data\n",
    "        location = weather_data['location']['name']\n",
    "        region = weather_data['location']['region']\n",
    "        country = weather_data['location']['country']\n",
    "        time = weather_data['location']['localtime']\n",
    "        temperature_c = weather_data['current']['temp_c']\n",
    "        condition_text = weather_data['current']['condition']['text']\n",
    "        wind_mph = weather_data['current']['wind_mph']\n",
    "        humidity = weather_data['current']['humidity']\n",
    "        feelslike_c = weather_data['current']['feelslike_c']\n",
    "\n",
    "        # Formulate the sentences\n",
    "        weather_sentences = (\n",
    "            f\"The current weather in {location}, {region}, {country} is {condition_text} \"\n",
    "            f\"with a temperature of {temperature_c}°C that feels like {feelslike_c}°C. \"\n",
    "            f\"Humidity is at {humidity}%. \"\n",
    "            f\"Wind speed is {wind_mph} mph.\"\n",
    "        )\n",
    "        return weather_sentences\n",
    "    else:\n",
    "        # Handle errors\n",
    "        return f\"Failed to get weather data: {response.status_code}, {response.text}\"\n",
    "    \n",
    "#forecast API\n",
    "def get_forecast(city_name:str= \"\", when = 0, **kwargs):\n",
    "    \"\"\"\n",
    "    Returns the weather forecast in a specified number of days for a specified city .\n",
    "    Args:\n",
    "    city_name (string) : Required. The name of the city.\n",
    "    when (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\n",
    "    \"\"\"\n",
    "    #print(when)\n",
    "    when +=1\n",
    "    # The endpoint URL provided by WeatherAPI\n",
    "    url = f\"http://api.weatherapi.com/v1/forecast.json?key={WEATHER_API_KEY}&q={city_name}&days={str(when)}&aqi=no\"\n",
    "\n",
    "\n",
    "    # Make the API request\n",
    "    response = requests.get(url)\n",
    "\n",
    "    if response.status_code == 200:\n",
    "        # Parse the JSON response\n",
    "        data = response.json()\n",
    "        \n",
    "        # Initialize an empty string to hold our result\n",
    "        forecast_sentences = \"\"\n",
    "\n",
    "        # Extract city information\n",
    "        location = data.get('location', {})\n",
    "        city_name = location.get('name', 'the specified location')\n",
    "        \n",
    "        #print(data)\n",
    "    \n",
    "\n",
    "        # Extract the forecast days\n",
    "        forecast_days = data.get('forecast', {}).get('forecastday', [])[when-1:]\n",
    "        #number = 0\n",
    "        \n",
    "        #print (forecast_days)\n",
    "\n",
    "        for day in forecast_days:\n",
    "            date = day.get('date', 'a specific day')\n",
    "            conditions = day.get('day', {}).get('condition', {}).get('text', 'weather conditions')\n",
    "            max_temp_c = day.get('day', {}).get('maxtemp_c', 'N/A')\n",
    "            min_temp_c = day.get('day', {}).get('mintemp_c', 'N/A')\n",
    "            chance_of_rain = day.get('day', {}).get('daily_chance_of_rain', 'N/A')\n",
    "            \n",
    "            if when == 1:\n",
    "                number_str = 'today'\n",
    "            elif when == 2:\n",
    "                number_str = 'tomorrow'\n",
    "            else:\n",
    "                number_str = f'in {when-1} days'\n",
    "\n",
    "            # Generate a sentence for the day's forecast\n",
    "            forecast_sentence = f\"On {date} ({number_str}) in {city_name}, the weather will be {conditions} with a high of {max_temp_c}°C and a low of {min_temp_c}°C. There's a {chance_of_rain}% chance of rain. \"\n",
    "            \n",
    "            #number = number + 1\n",
    "            # Add the sentence to the result\n",
    "            forecast_sentences += forecast_sentence\n",
    "        return forecast_sentences\n",
    "    else:\n",
    "        # Handle errors\n",
    "        print( f\"Failed to get weather data: {response.status_code}, {response.text}\")\n",
    "        return f'error {response.status_code}'\n",
    "\n",
    "\n",
    "#############################################################\n",
    "# Step 2: Let's define some utils for building the prompt ###\n",
    "#############################################################\n",
    "\n",
    "\n",
    "def format_functions_for_prompt(*functions):\n",
    "    formatted_functions = []\n",
    "    for func in functions:\n",
    "        source_code = inspect.getsource(func)\n",
    "        docstring = inspect.getdoc(func)\n",
    "        formatted_functions.append(\n",
    "            f\"OPTION:\\n<func_start>{source_code}<func_end>\\n<docstring_start>\\n{docstring}\\n<docstring_end>\"\n",
    "        )\n",
    "    return \"\\n\".join(formatted_functions)\n",
    "\n",
    "\n",
    "##############################\n",
    "# Step 3: Construct Prompt ###\n",
    "##############################\n",
    "\n",
    "\n",
    "def construct_prompt(user_query: str, context):\n",
    "    formatted_prompt = format_functions_for_prompt(get_weather, find_points_of_interest, find_route, get_forecast, search_along_route)\n",
    "    formatted_prompt += f'\\n\\nContext : {context}'\n",
    "    formatted_prompt += f\"\\n\\nUser Query: Question: {user_query}\\n\"\n",
    "\n",
    "    prompt = (\n",
    "        \"<human>:\\n\"\n",
    "        + formatted_prompt\n",
    "        + \"Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\"\n",
    "    )\n",
    "    return prompt\n",
    "\n",
    "#######################################\n",
    "# Step 4: Execute the function call ###\n",
    "#######################################\n",
    "\n",
    "\n",
    "def execute_function_call(model_output):\n",
    "    # Ignore everything after \"Reflection\" since that is not essential.\n",
    "    function_call = (\n",
    "        model_output[0][\"generated_text\"]\n",
    "        .strip()\n",
    "        .split(\"\\n\")[1]\n",
    "        .replace(\"Initial Answer:\", \"\")\n",
    "        .strip()\n",
    "    )\n",
    "\n",
    "    try:\n",
    "        return eval(function_call)\n",
    "    except Exception as e:\n",
    "        return str(e)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# might be deleted\n",
    "# Compute a Simple equation\n",
    "print(\"before everything: \")\n",
    "!nvidia-smi\n",
    "prompt = construct_prompt(\"What restaurants are there on the road from Luxembourg Gare, which coordinates are lat 49.5999681, lon 6.1342493, to Thionville?\", \"\")\n",
    "print(\"after creating prompt: \")\n",
    "!nvidia-smi\n",
    "model_output = pipe(\n",
    "    prompt, do_sample=False, max_new_tokens=300, return_full_text=False\n",
    "    )\n",
    "print(model_output[0][\"generated_text\"])\n",
    "\n",
    "print(\"creating the pipe of model output: \")\n",
    "!nvidia-smi\n",
    "result = execute_function_call(model_output)\n",
    "print(\"execute function call: \")\n",
    "!nvidia-smi\n",
    "del model_output\n",
    "import gc         # garbage collect library\n",
    "gc.collect()\n",
    "torch.cuda.empty_cache() \n",
    "\n",
    "#print(\"Model Output:\", model_output)\n",
    "print(\"Execution Result:\", result)\n",
    "\n",
    "\n",
    "#execute_function_call(pipe(construct_prompt(\"Is it raining in Belval, ?\"), do_sample=False, max_new_tokens=300, return_full_text=False))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## functions to process the anwser and the question"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#generation of text with Stable beluga \n",
    "def gen(p, maxlen=15, sample=True):\n",
    "    toks = tokr(p, return_tensors=\"pt\")\n",
    "    res = model.generate(**toks.to(\"cuda\"), max_new_tokens=maxlen, do_sample=sample).to('cpu')\n",
    "    return tokr.batch_decode(res)\n",
    "\n",
    "#to have a prompt corresponding to the specific format required by the fine-tuned model Stable Beluga\n",
    "def mk_prompt(user, syst=\"### System:\\nYou are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n\\n\"): return f\"{syst}### User: {user}\\n\\n### Assistant:\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "yAJI0WyOLE8G"
   },
   "outputs": [],
   "source": [
    "def car_answer_only(complete_answer, general_context):\n",
    "    \"\"\"returns only the AI assistant answer, without all context, to reply to the user\"\"\"\n",
    "    pattern = r\"Assistant:\\\\n(.*)(</s>|[.!?](\\s|$))\" #pattern = r\"Assistant:\\\\n(.*?)</s>\"\n",
    "\n",
    "    match = re.search(pattern, complete_answer, re.DOTALL)\n",
    "\n",
    "    if match:\n",
    "        # Extracting the text\n",
    "        model_answer = match.group(1)\n",
    "        #print(complete_answer)\n",
    "    else:\n",
    "        #print(complete_answer)\n",
    "        model_answer = \"There has been an error with the generated response.\" \n",
    "\n",
    "    general_context +=  model_answer\n",
    "    return (model_answer, general_context)\n",
    "#print(model_answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ViCEgogaENNV"
   },
   "outputs": [],
   "source": [
    "def FnAnswer(general_context, ques, place, time, delete_history, state):\n",
    "    \"\"\"function to manage the two different llms (function calling and basic answer) and call them one after the other\"\"\"\n",
    "    # Initialize state if it is None\n",
    "    if delete_history == \"Yes\":\n",
    "        state = None\n",
    "    if state is None:\n",
    "        conv_context = []\n",
    "        conv_context.append(general_context)\n",
    "        state = {}\n",
    "        state['context'] = conv_context\n",
    "        state['number'] = 0\n",
    "        state['last_question'] = \"\"\n",
    "        \n",
    "    if type(ques) != str: \n",
    "        ques = ques[0]\n",
    "        \n",
    "    place = definePlace(place) #which on the predefined places it is\n",
    "    \n",
    "    formatted_context = '\\n'.join(state['context'])\n",
    "        \n",
    "    #updated at every question\n",
    "    general_context = f\"\"\"\n",
    "    Recent conversation history: '{formatted_context}' (If empty, this indicates the beginning of the conversation).\n",
    "\n",
    "    Previous question from the user: '{state['last_question']}' (This may or may not be related to the current question).\n",
    "\n",
    "    User information: The user is inside a car in {place[0]}, with latitude {place[1]} and longitude {place[2]}. The user is mobile and can drive to different destinations. It is currently {time}\n",
    "\n",
    "    \"\"\"\n",
    "    #first llm call (function calling model, NexusRaven)\n",
    "    model_output= pipe(construct_prompt(ques, general_context), do_sample=False, max_new_tokens=300, return_full_text=False)\n",
    "    call = execute_function_call(model_output) #call variable is formatted to as a call to a specific function with the required parameters\n",
    "    print(call)\n",
    "    #this is what will erase the model_output from the GPU memory to free up space\n",
    "    del model_output\n",
    "    import gc         # garbage collect library\n",
    "    gc.collect()\n",
    "    torch.cuda.empty_cache() \n",
    "        \n",
    "    #updated at every question\n",
    "    general_context += f'This information might be of help, use if it seems relevant, and ignore if not relevant to reply to the user: \"{call}\". '\n",
    "    \n",
    "    #question formatted for the StableBeluga llm (second llm), using the output of the first llm as context in general_context\n",
    "    question=f\"\"\"Reply to the user and answer any question with the help of the provided context.\n",
    "\n",
    "    ## Context\n",
    "\n",
    "    {general_context} .\n",
    "\n",
    "    ## Question\n",
    "\n",
    "    {ques}\"\"\"\n",
    "\n",
    "    complete_answer = str(gen(mk_prompt(question), 100)) #answer generation with StableBeluga (2nd llm)\n",
    "\n",
    "    model_answer, general_context= car_answer_only(complete_answer, general_context) #to retrieve only the car answer \n",
    "    \n",
    "    language = pipe_language(model_answer, top_k=1, truncation=True)[0]['label'] #detect the language of the answer, to modify the text-to-speech consequently\n",
    "    \n",
    "    state['last_question'] = ques #add the current question as 'last question' for the next question's context\n",
    "    \n",
    "    state['number']= state['number'] + 1  #adds 1 to the number of interactions with the car\n",
    "\n",
    "    state['context'].append(str(state['number']) + '. User question: '+ ques + ', Model answer: ' + model_answer) #modifies the context\n",
    "    \n",
    "    #print(\"contexte : \" + '\\n'.join(state['context']))\n",
    "    \n",
    "    if len(state['context'])>5: #6 questions maximum in the context to avoid having too many information\n",
    "        state['context'] = state['context'][1:]\n",
    "\n",
    "    return model_answer, state['context'], state, language"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "9WQlYePVLrTN"
   },
   "outputs": [],
   "source": [
    "def transcript(general_context, link_to_audio, voice, place, time, delete_history, state):\n",
    "    \"\"\"this function manages speech-to-text to input Fnanswer function and text-to-speech with the Fnanswer output\"\"\"\n",
    "    # load audio from a specific path\n",
    "    audio_path = link_to_audio\n",
    "    audio_array, sampling_rate = librosa.load(link_to_audio, sr=16000)  # \"sr=16000\" ensures that the sampling rate is as required\n",
    "\n",
    "\n",
    "    # process the audio array\n",
    "    input_features = processor(audio_array, sampling_rate, return_tensors=\"pt\").input_features\n",
    "\n",
    "\n",
    "    predicted_ids = modelw.generate(input_features)\n",
    "\n",
    "    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)\n",
    "\n",
    "    quest_processing = FnAnswer(general_context, transcription, place, time, delete_history, state)\n",
    "    \n",
    "    state=quest_processing[2]\n",
    "    \n",
    "    print(\"langue \" + quest_processing[3])\n",
    "\n",
    "    tts.tts_to_file(text= str(quest_processing[0]),\n",
    "                file_path=\"output.wav\",\n",
    "                speaker_wav=f'Audio_Files/{voice}.wav',\n",
    "                language=quest_processing[3],\n",
    "                emotion = \"angry\")\n",
    "\n",
    "    audio_path = \"output.wav\"\n",
    "    return audio_path, state['context'], state"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def definePlace(place):\n",
    "    if(place == 'Luxembourg Gare, Luxembourg'):\n",
    "        return('Luxembourg Gare', '49.5999681', '6.1342493' )\n",
    "    elif (place =='Kirchberg Campus, Kirchberg'):\n",
    "        return('Kirchberg Campus, Luxembourg', '49.62571206478235', '6.160082636815114')\n",
    "    elif (place =='Belval Campus, Belval'):\n",
    "        return('Belval-Université, Esch-sur-Alzette', '49.499531', '5.9462903')\n",
    "    elif (place =='Eiffel Tower, Paris'):\n",
    "        return('Eiffel Tower, Paris', '48.8582599', '2.2945006')\n",
    "    elif (place=='Thionville, France'):\n",
    "        return('Thionville, France', '49.357927', '6.167587')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Interfaces (text and audio)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "#INTERFACE WITH ONLY TEXT\n",
    "\n",
    "# Generate options for hours (00-23) \n",
    "hour_options = [f\"{i:02d}:00:00\" for i in range(24)]\n",
    "\n",
    "model_answer= ''\n",
    "general_context= ''\n",
    "# Define the initial state with some initial context.\n",
    "print(general_context)\n",
    "initial_state = {'context': general_context}\n",
    "initial_context= initial_state['context']\n",
    "# Create the Gradio interface.\n",
    "iface = gr.Interface(\n",
    "    fn=FnAnswer,\n",
    "    inputs=[\n",
    "        gr.Textbox(value=initial_context, visible=False),\n",
    "        gr.Textbox(lines=2, placeholder=\"Type your message here...\"),\n",
    "        gr.Radio(choices=['Luxembourg Gare, Luxembourg', 'Kirchberg Campus, Kirchberg', 'Belval Campus, Belval', 'Eiffel Tower, Paris', 'Thionville, France'], label='Choose a location for your car', value= 'Kirchberg Campus, Kirchberg', show_label=True),\n",
    "        gr.Dropdown(choices=hour_options, label=\"What time is it?\", value = \"08:00:00\"),\n",
    "        gr.Radio([\"Yes\", \"No\"], label=\"Delete the conversation history?\", value = 'No'),\n",
    "        gr.State()  # This will keep track of the context state across interactions.\n",
    "    ],\n",
    "    outputs=[\n",
    "        gr.Textbox(),\n",
    "        gr.Textbox(visible=False),\n",
    "        gr.State()\n",
    "    ]\n",
    ")\n",
    "gr.close_all()\n",
    "# Launch the interface.\n",
    "iface.launch(debug=True, share=True, server_name=\"0.0.0.0\", server_port=7860)\n",
    "#contextual=gr.Textbox(value=general_context, visible=False)\n",
    "#demo = gr.Interface(fn=FnAnswer, inputs=[contextual,\"text\"], outputs=[\"text\", contextual])\n",
    "\n",
    "#demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true,
    "id": "mZTt3y3_KOOF"
   },
   "outputs": [],
   "source": [
    "#INTERFACE WITH AUDIO TO AUDIO\n",
    "\n",
    "#to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/ \n",
    "#in \"Insecure origins treated as secure\", enable it and relaunch chrome\n",
    "\n",
    "#example question: \n",
    "# what's the weather like outside?\n",
    "# What's the closest restaurant from here?\n",
    "\n",
    "\n",
    "\n",
    "# Generate options for hours (00-23) \n",
    "hour_options = [f\"{i:02d}:00:00\" for i in range(24)]\n",
    "\n",
    "model_answer= ''\n",
    "general_context= ''\n",
    "# Define the initial state with some initial context.\n",
    "print(general_context)\n",
    "initial_state = {'context': general_context}\n",
    "initial_context= initial_state['context']\n",
    "# Create the Gradio interface.\n",
    "iface = gr.Interface(\n",
    "    fn=transcript,\n",
    "    inputs=[\n",
    "        gr.Textbox(value=initial_context, visible=False),\n",
    "        gr.Audio( type='filepath', label = 'input audio'),\n",
    "        gr.Radio(choices=['Donald Trump', 'Eddie Murphy'], label='Choose a voice', value= 'Donald Trump', show_label=True),  # Radio button for voice selection\n",
    "        gr.Radio(choices=['Luxembourg Gare, Luxembourg', 'Kirchberg Campus, Kirchberg', 'Belval Campus, Belval', 'Eiffel Tower, Paris', 'Thionville, France'], label='Choose a location for your car', value= 'Kirchberg Campus, Kirchberg', show_label=True),\n",
    "        gr.Dropdown(choices=hour_options, label=\"What time is it?\", value = \"08:00:00\"),\n",
    "        gr.Radio([\"Yes\", \"No\"], label=\"Delete the conversation history?\", value = 'No'),\n",
    "        gr.State()  # This will keep track of the context state across interactions.\n",
    "    ],\n",
    "    outputs=[\n",
    "        gr.Audio(label = 'output audio'),\n",
    "        gr.Textbox(visible=False),\n",
    "        gr.State()\n",
    "    ]\n",
    ")\n",
    "#close all interfaces open to make the port available\n",
    "gr.close_all()\n",
    "# Launch the interface.\n",
    "iface.launch(debug=True, share=True, server_name=\"0.0.0.0\", server_port=7860, ssl_verify=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Other possible APIs to use"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def search_nearby(lat, lon, city, key):\n",
    "    \"\"\"\n",
    "    :param lat: latitude\n",
    "    :param lon: longitude\n",
    "    :param key: api key\n",
    "    :param type: type of poi\n",
    "    :return: [5] results ['poi']['name']/['freeformAddress'] || ['position']['lat']/['lon']\n",
    "    \"\"\"\n",
    "    results = []\n",
    "\n",
    "    r = requests.get('https://api.tomtom.com/search/2/nearbySearch/.json?key={0}&lat={1}&lon={2}&radius=10000&limit=50'.format(\n",
    "                        key,\n",
    "                        lat,\n",
    "                        lon\n",
    "    ))\n",
    "\n",
    "    for result in r.json()['results']:\n",
    "        results.append(f\"The {' '.join(result['poi']['categories'])} {result['poi']['name']} is {int(result['dist'])} meters far from {city}\")\n",
    "        if len(results) == 7:\n",
    "            break\n",
    "\n",
    "    return \". \".join(results)\n",
    "\n",
    "\n",
    "print(search_nearby('49.625892805337514', '6.160417066963513', 'your location', TOMTOM_KEY))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "gpuType": "T4",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}