File size: 11,067 Bytes
3ae3815 6b9d2e8 3ae3815 6b9d2e8 3ae3815 6b9d2e8 e5f444f 7b96044 3ae3815 7b96044 3ae3815 7b96044 e5f444f cc1b4c0 e5f444f 7b96044 247bc50 e5f444f 6b9d2e8 7b96044 e5f444f 6b9d2e8 247bc50 7b96044 247bc50 7b96044 3ae3815 247bc50 7b96044 9549d62 7b96044 3ae3815 60a0b19 3ae3815 cc1b4c0 3ae3815 7b96044 3ae3815 247bc50 3ae3815 7b96044 6b9d2e8 3ae3815 6b9d2e8 e5f444f 7b96044 e5f444f 3ae3815 6b9d2e8 7b96044 cc1b4c0 7b96044 6b9d2e8 7b96044 6b9d2e8 3ae3815 cb47347 247bc50 cb47347 6b9d2e8 247bc50 cb47347 e5f444f 6b9d2e8 3ae3815 7b96044 6b9d2e8 e5f444f 3ae3815 e5f444f 7b96044 e5f444f 3ae3815 7b96044 6b9d2e8 e5f444f 7b96044 3ae3815 7b96044 3ae3815 7b96044 e5f444f 7b96044 3ae3815 7b96044 6b9d2e8 e5f444f 9549d62 6b9d2e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import time
import gradio as gr
import numpy as np
import requests
import torch
import torchaudio
from transformers import pipeline
import skills
from skills.common import config, vehicle
from skills.routing import calculate_route
import ollama
### LLM Stuff ###
from langchain_community.llms import Ollama
from langchain.tools.base import StructuredTool
from skills import (
get_weather,
find_route,
get_forecast,
vehicle_status as vehicle_status_fn,
search_points_of_interests,
search_along_route_w_coordinates,
do_anything_else,
date_time_info
)
from skills import extract_func_args
from core import voice_options, load_tts_pipeline, tts_gradio
global_context = {
"vehicle": vehicle,
"query": "How is the weather?",
"route_points": [],
}
speaker_embedding_cache = {}
MODEL_FUNC = "nexusraven"
MODEL_GENERAL = "llama3:instruct"
RAVEN_PROMPT_FUNC = """You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on."
{raven_tools}
{history}
User Query: Question: {input}<human_end>
"""
def get_prompt(template, input, history, tools):
# "vehicle_status": vehicle_status_fn()[0]
kwargs = {"history": history, "input": input}
prompt = "<human>:\n"
for tool in tools:
func_signature, func_docstring = tool.description.split(" - ", 1)
prompt += f'Function:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
kwargs["raven_tools"] = prompt
if history:
kwargs["history"] = f"Previous conversation history:{history}\n"
return template.format(**kwargs).replace("{{", "{").replace("}}", "}")
def use_tool(func_name, kwargs, tools):
for tool in tools:
if tool.name == func_name:
return tool.invoke(input=kwargs)
return None
# llm = Ollama(model="nexusraven", stop=["\nReflection:", "\nThought:"], keep_alive=60*10)
# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00:00" for i in range(24)]
def search_along_route(query=""):
"""Search for points of interest along the route/way to the destination.
Args:
query (str, optional): The type of point of interest to search for. Defaults to "restaurant".
"""
points = global_context["route_points"]
# maybe reshape
return search_along_route_w_coordinates(points, query)
def set_time(time_picker):
vehicle.time = time_picker
return vehicle.model_dump_json()
def get_vehicle_status(state):
return state.value["vehicle"].model_dump_json()
tools = [
StructuredTool.from_function(get_weather),
StructuredTool.from_function(find_route),
# StructuredTool.from_function(vehicle_status),
StructuredTool.from_function(search_points_of_interests),
StructuredTool.from_function(search_along_route),
StructuredTool.from_function(date_time_info),
StructuredTool.from_function(do_anything_else),
]
def run_generic_model(query):
print(f"Running the generic model with query: {query}")
data = {
"prompt": f"Answer the question below in a short and concise manner.\n{query}",
"model": MODEL_GENERAL,
"options": {
# "temperature": 0.1,
# "stop":["\nReflection:", "\nThought:"]
}
}
out = ollama.generate(**data)
return out["response"]
def run_model(query, voice_character):
query = query.strip().replace("'", "")
print("Query: ", query)
global_context["query"] = query
global_context["prompt"] = get_prompt(RAVEN_PROMPT_FUNC, query, "", tools)
print("Prompt: ", global_context["prompt"])
data = {
"prompt": global_context["prompt"],
# "streaming": False,
"model": "nexusraven",
# "model": "smangrul/llama-3-8b-instruct-function-calling",
"raw": True,
"options": {
"temperature": 0.5,
"stop":["\nReflection:", "\nThought:"]
}
}
out = ollama.generate(**data)
llm_response = out["response"]
if "Call: " in llm_response:
print(f"llm_response: {llm_response}")
llm_response = llm_response.replace("<bot_end>"," ")
func_name, kwargs = extract_func_args(llm_response)
print(f"Function: {func_name}, Args: {kwargs}")
if func_name == "do_anything_else":
output_text = run_generic_model(query)
else:
output_text = use_tool(func_name, kwargs, tools)
else:
output_text = out["response"]
if type(output_text) == tuple:
output_text = output_text[0]
gr.Info(f"Output text: {output_text}, generating voice output...")
return output_text, tts_gradio(tts_pipeline, output_text, voice_character, speaker_embedding_cache)[0]
def calculate_route_gradio(origin, destination):
plot, vehicle_status, points = calculate_route(origin, destination)
global_context["route_points"] = points
vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
return plot, vehicle_status
def update_vehicle_status(trip_progress):
n_points = len(global_context["route_points"])
new_coords = global_context["route_points"][min(int(trip_progress / 100 * n_points), n_points - 1)]
new_coords = new_coords["latitude"], new_coords["longitude"]
print(f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}")
vehicle.location_coordinates = new_coords
vehicle.location = ""
return vehicle.model_dump_json()
device = "cuda" if torch.cuda.is_available() else "cpu"
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en", device=device)
def save_audio_as_wav(data, sample_rate, file_path):
# make a tensor from the numpy array
data = torch.tensor(data).reshape(1, -1)
torchaudio.save(file_path, data, sample_rate=sample_rate, bits_per_sample=16, encoding="PCM_S")
def save_and_transcribe_audio(audio):
try:
# capture the audio and save it to a file as wav or mp3
# file_name = save("audioinput.wav")
sr, y = audio
# y = y.astype(np.float32)
# y /= np.max(np.abs(y))
# add timestamp to file name
filename = f"recordings/audio{time.time()}.wav"
save_audio_as_wav(y, sr, filename)
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
text = transcriber({"sampling_rate": sr, "raw":y})["text"]
except Exception as e:
print(f"Error: {e}")
return "Error transcribing audio"
return text
# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome
# example question:
# what's the weather like outside?
# What's the closest restaurant from here?
tts_pipeline = load_tts_pipeline()
with gr.Blocks(theme=gr.themes.Default()) as demo:
state = gr.State(
value={
# "context": initial_context,
"query": "",
"route_points": [],
}
)
trip_points = gr.State(value=[])
with gr.Row():
with gr.Column(scale=1, min_width=300):
time_picker = gr.Dropdown(
choices=hour_options,
label="What time is it? (HH:MM)",
value="08:00:00",
interactive=True,
)
history = gr.Radio(
["Yes", "No"],
label="Maintain the conversation history?",
value="No",
interactive=True,
)
voice_character = gr.Radio(choices=voice_options, label='Choose a voice', value=voice_options[0], show_label=True)
origin = gr.Textbox(
value="Mondorf-les-Bains, Luxembourg", label="Origin", interactive=True
)
destination = gr.Textbox(
value="Rue Alphonse Weicker, Luxembourg",
label="Destination",
interactive=True,
)
with gr.Column(scale=2, min_width=600):
map_plot = gr.Plot()
trip_progress = gr.Slider(0, 100, step=5, label="Trip progress", interactive=True)
# map_if = gr.Interface(fn=plot_map, inputs=year_input, outputs=map_plot)
with gr.Row():
with gr.Column():
input_audio = gr.Audio(
type="numpy",sources=["microphone"], label="Input audio", elem_id="input_audio"
)
input_text = gr.Textbox(
value="How is the weather?", label="Input text", interactive=True
)
vehicle_status = gr.JSON(
value=vehicle.model_dump_json(), label="Vehicle status"
)
with gr.Column():
output_audio = gr.Audio(label="output audio", autoplay=True)
output_text = gr.TextArea(value="", label="Output text", interactive=False)
# iface = gr.Interface(
# fn=transcript,
# inputs=[
# gr.Textbox(value=initial_context, visible=False),
# gr.Audio(type="filepath", label="input audio", elem_id="recorder"),
# voice_character,
# emotion,
# place,
# time_picker,
# history,
# gr.State(), # This will keep track of the context state across interactions.
# ],
# outputs=[gr.Audio(label="output audio"), gr.Textbox(visible=False), gr.State()],
# head=shortcut_js,
# )
# Update plot based on the origin and destination
# Sets the current location and destination
origin.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status],
)
destination.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status],
)
# Update time based on the time picker
time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])
# Run the model if the input text is changed
input_text.submit(fn=run_model, inputs=[input_text, voice_character], outputs=[output_text, output_audio])
# Set the vehicle status based on the trip progress
trip_progress.release(
fn=update_vehicle_status, inputs=[trip_progress], outputs=[vehicle_status]
)
# Save and transcribe the audio
input_audio.stop_recording(
fn=save_and_transcribe_audio, inputs=[input_audio], outputs=[input_text]
)
# close all interfaces open to make the port available
gr.close_all()
# Launch the interface.
if __name__ == "__main__":
# demo.launch(debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=False)
demo.launch(debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=True, share=True)
# iface.launch(debug=True, share=False, server_name="0.0.0.0", server_port=7860, ssl_verify=False)
|