File size: 11,067 Bytes
3ae3815
6b9d2e8
3ae3815
6b9d2e8
3ae3815
 
 
 
 
6b9d2e8
e5f444f
 
 
7b96044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae3815
7b96044
 
 
 
 
 
 
 
3ae3815
7b96044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f444f
 
 
cc1b4c0
e5f444f
7b96044
247bc50
 
 
 
 
 
 
 
 
 
 
 
e5f444f
 
 
6b9d2e8
7b96044
e5f444f
 
6b9d2e8
 
247bc50
 
 
 
 
 
 
 
 
 
 
7b96044
 
 
247bc50
7b96044
 
 
 
 
 
 
 
 
 
3ae3815
247bc50
7b96044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9549d62
 
7b96044
 
 
3ae3815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60a0b19
3ae3815
 
 
cc1b4c0
3ae3815
 
7b96044
3ae3815
 
 
 
 
 
 
 
 
 
 
247bc50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae3815
7b96044
6b9d2e8
 
 
 
 
 
 
 
3ae3815
 
 
6b9d2e8
e5f444f
7b96044
 
 
 
 
e5f444f
3ae3815
6b9d2e8
 
 
 
7b96044
 
cc1b4c0
7b96044
6b9d2e8
 
7b96044
 
 
 
6b9d2e8
3ae3815
cb47347
247bc50
cb47347
6b9d2e8
247bc50
cb47347
 
 
e5f444f
6b9d2e8
 
3ae3815
7b96044
6b9d2e8
 
e5f444f
 
3ae3815
 
e5f444f
 
 
 
7b96044
 
e5f444f
 
3ae3815
7b96044
6b9d2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f444f
 
7b96044
3ae3815
7b96044
 
 
 
3ae3815
7b96044
 
 
e5f444f
 
 
 
7b96044
3ae3815
 
 
 
 
 
 
 
 
 
 
7b96044
6b9d2e8
 
 
 
e5f444f
9549d62
 
6b9d2e8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import time
import gradio as gr
import numpy as np
import requests
import torch
import torchaudio
from transformers import pipeline



import skills
from skills.common import config, vehicle
from skills.routing import calculate_route
import ollama

### LLM Stuff ###
from langchain_community.llms import Ollama
from langchain.tools.base import StructuredTool

from skills import (
    get_weather,
    find_route,
    get_forecast,
    vehicle_status as vehicle_status_fn,
    search_points_of_interests,
    search_along_route_w_coordinates,
    do_anything_else,
    date_time_info
)
from skills import extract_func_args
from core import voice_options, load_tts_pipeline, tts_gradio


global_context = {
    "vehicle": vehicle,
    "query": "How is the weather?",
    "route_points": [],
}

speaker_embedding_cache = {}

MODEL_FUNC = "nexusraven"
MODEL_GENERAL = "llama3:instruct"

RAVEN_PROMPT_FUNC = """You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on."

{raven_tools}

{history}

User Query: Question: {input}<human_end>
"""

def get_prompt(template, input, history, tools):
    # "vehicle_status": vehicle_status_fn()[0]
    kwargs = {"history": history, "input": input}
    prompt = "<human>:\n"
    for tool in tools:
        func_signature, func_docstring = tool.description.split(" - ", 1)
        prompt += f'Function:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
    kwargs["raven_tools"] = prompt

    if history:
        kwargs["history"] = f"Previous conversation history:{history}\n"

    return template.format(**kwargs).replace("{{", "{").replace("}}", "}")

def use_tool(func_name, kwargs, tools):
    for tool in tools:
        if tool.name == func_name:
            return tool.invoke(input=kwargs)
    return None

# llm = Ollama(model="nexusraven", stop=["\nReflection:", "\nThought:"], keep_alive=60*10)


# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00:00" for i in range(24)]


def search_along_route(query=""):
    """Search for points of interest along the route/way to the destination.

    Args:
        query (str, optional): The type of point of interest to search for. Defaults to "restaurant".
    
    """
    points = global_context["route_points"]
    # maybe reshape
    return search_along_route_w_coordinates(points, query)


def set_time(time_picker):
    vehicle.time = time_picker
    return vehicle.model_dump_json()


def get_vehicle_status(state):
    return state.value["vehicle"].model_dump_json()


tools = [
    StructuredTool.from_function(get_weather),
    StructuredTool.from_function(find_route),
    # StructuredTool.from_function(vehicle_status),
    StructuredTool.from_function(search_points_of_interests),
    StructuredTool.from_function(search_along_route),
    StructuredTool.from_function(date_time_info),
    StructuredTool.from_function(do_anything_else),
]


def run_generic_model(query):
    print(f"Running the generic model with query: {query}")
    data = {
        "prompt": f"Answer the question below in a short and concise manner.\n{query}",
        "model": MODEL_GENERAL,
        "options": {
            # "temperature": 0.1,
            # "stop":["\nReflection:", "\nThought:"]
        }
    }
    out = ollama.generate(**data)
    return out["response"]


def run_model(query, voice_character):
    query = query.strip().replace("'", "")
    print("Query: ", query)
    global_context["query"] = query
    global_context["prompt"] = get_prompt(RAVEN_PROMPT_FUNC, query, "", tools)
    print("Prompt: ", global_context["prompt"])
    data = {
        "prompt": global_context["prompt"],
        # "streaming": False,
        "model": "nexusraven",
        # "model": "smangrul/llama-3-8b-instruct-function-calling",
        "raw": True,
        "options": {
            "temperature": 0.5,
            "stop":["\nReflection:", "\nThought:"]
        }
    }
    out = ollama.generate(**data)
    llm_response = out["response"]
    if "Call: " in llm_response:
        print(f"llm_response: {llm_response}")
        llm_response = llm_response.replace("<bot_end>"," ")
        func_name, kwargs = extract_func_args(llm_response)
        print(f"Function: {func_name}, Args: {kwargs}")
        if func_name == "do_anything_else":
            output_text = run_generic_model(query)
        else:
            output_text = use_tool(func_name, kwargs, tools)
    else:
        output_text = out["response"]

    if type(output_text) == tuple:
        output_text = output_text[0]
    gr.Info(f"Output text: {output_text}, generating voice output...")
    return output_text, tts_gradio(tts_pipeline, output_text, voice_character, speaker_embedding_cache)[0]


def calculate_route_gradio(origin, destination):
    plot, vehicle_status, points = calculate_route(origin, destination)
    global_context["route_points"] = points
    vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
    return plot, vehicle_status


def update_vehicle_status(trip_progress):
    n_points = len(global_context["route_points"])
    new_coords = global_context["route_points"][min(int(trip_progress / 100 * n_points), n_points - 1)]
    new_coords = new_coords["latitude"], new_coords["longitude"]
    print(f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}")
    vehicle.location_coordinates = new_coords
    vehicle.location = ""
    return vehicle.model_dump_json()


device = "cuda" if torch.cuda.is_available() else "cpu"
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en", device=device)


def save_audio_as_wav(data, sample_rate, file_path):
    # make a tensor from the numpy array
    data = torch.tensor(data).reshape(1, -1)
    torchaudio.save(file_path, data, sample_rate=sample_rate, bits_per_sample=16, encoding="PCM_S")


def save_and_transcribe_audio(audio):
    try:
        # capture the audio and save it to a file as wav or mp3
        # file_name = save("audioinput.wav")
        sr, y = audio
        # y = y.astype(np.float32)
        # y /= np.max(np.abs(y))

        # add timestamp to file name
        filename = f"recordings/audio{time.time()}.wav"
        save_audio_as_wav(y, sr, filename)
        
        sr, y = audio
        y = y.astype(np.float32)
        y /= np.max(np.abs(y))
        text = transcriber({"sampling_rate": sr, "raw":y})["text"]
    except Exception as e:
        print(f"Error: {e}")
        return "Error transcribing audio"
    return text

# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome

# example question:
# what's the weather like outside?
# What's the closest restaurant from here?


tts_pipeline = load_tts_pipeline()


with gr.Blocks(theme=gr.themes.Default()) as demo:
    state = gr.State(
        value={
            # "context": initial_context,
            "query": "",
            "route_points": [],
        }
    )
    trip_points = gr.State(value=[])

    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            time_picker = gr.Dropdown(
                choices=hour_options,
                label="What time is it? (HH:MM)",
                value="08:00:00",
                interactive=True,
            )
            history = gr.Radio(
                ["Yes", "No"],
                label="Maintain the conversation history?",
                value="No",
                interactive=True,
            )
            voice_character = gr.Radio(choices=voice_options, label='Choose a voice', value=voice_options[0], show_label=True)
            origin = gr.Textbox(
                value="Mondorf-les-Bains, Luxembourg", label="Origin", interactive=True
            )
            destination = gr.Textbox(
                value="Rue Alphonse Weicker, Luxembourg",
                label="Destination",
                interactive=True,
            )

        with gr.Column(scale=2, min_width=600):
            map_plot = gr.Plot()
            trip_progress = gr.Slider(0, 100, step=5, label="Trip progress", interactive=True)

            # map_if = gr.Interface(fn=plot_map, inputs=year_input, outputs=map_plot)

    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(
                type="numpy",sources=["microphone"], label="Input audio", elem_id="input_audio"
            )
            input_text = gr.Textbox(
                value="How is the weather?", label="Input text", interactive=True
            )
            vehicle_status = gr.JSON(
                value=vehicle.model_dump_json(), label="Vehicle status"
            )
        with gr.Column():
            output_audio = gr.Audio(label="output audio", autoplay=True)
            output_text = gr.TextArea(value="", label="Output text", interactive=False)
    # iface = gr.Interface(
    #     fn=transcript,
    #     inputs=[
    #         gr.Textbox(value=initial_context, visible=False),
    #         gr.Audio(type="filepath", label="input audio", elem_id="recorder"),
    #         voice_character,
    #         emotion,
    #         place,
    #         time_picker,
    #         history,
    #         gr.State(),  # This will keep track of the context state across interactions.
    #     ],
    #     outputs=[gr.Audio(label="output audio"), gr.Textbox(visible=False), gr.State()],
    #     head=shortcut_js,
    # )

    # Update plot based on the origin and destination
    # Sets the current location and destination
    origin.submit(
        fn=calculate_route_gradio,
        inputs=[origin, destination],
        outputs=[map_plot, vehicle_status],
    )
    destination.submit(
        fn=calculate_route_gradio,
        inputs=[origin, destination],
        outputs=[map_plot, vehicle_status],
    )

    # Update time based on the time picker
    time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])

    # Run the model if the input text is changed
    input_text.submit(fn=run_model, inputs=[input_text, voice_character], outputs=[output_text, output_audio])

    # Set the vehicle status based on the trip progress
    trip_progress.release(
        fn=update_vehicle_status, inputs=[trip_progress], outputs=[vehicle_status]
    )

    # Save and transcribe the audio
    input_audio.stop_recording(
        fn=save_and_transcribe_audio, inputs=[input_audio], outputs=[input_text]
    )

# close all interfaces open to make the port available
gr.close_all()
# Launch the interface.

if __name__ == "__main__":
    # demo.launch(debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=False)
    demo.launch(debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=True, share=True)

# iface.launch(debug=True, share=False, server_name="0.0.0.0", server_port=7860, ssl_verify=False)