File size: 15,002 Bytes
e0f71e1 60ee11d e0f71e1 bd669ec 962f893 e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d 962f893 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 962f893 e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 bd669ec 60ee11d e0f71e1 962f893 e0f71e1 962f893 e0f71e1 962f893 e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 962f893 e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 962f893 e0f71e1 bd669ec e0f71e1 962f893 e0f71e1 60ee11d e0f71e1 60ee11d e0f71e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import time
import gradio as gr
import numpy as np
import torch
import torchaudio
from transformers import pipeline
import typer
from kitt.skills.common import config, vehicle
from kitt.skills.routing import calculate_route
import ollama
from langchain.tools.base import StructuredTool
from langchain.memory import ChatMessageHistory
from langchain_core.utils.function_calling import convert_to_openai_function
from loguru import logger
from kitt.skills import (
get_weather,
find_route,
get_forecast,
vehicle_status as vehicle_status_fn,
search_points_of_interests,
search_along_route_w_coordinates,
do_anything_else,
date_time_info,
get_weather_current_location,
code_interpreter,
)
from kitt.skills import extract_func_args
from kitt.core import voice_options, tts_gradio
from kitt.core.model import process_query
from kitt.core import utils as kitt_utils
global_context = {
"vehicle": vehicle,
"query": "How is the weather?",
"route_points": [],
}
speaker_embedding_cache = {}
history = ChatMessageHistory()
MODEL_FUNC = "nexusraven"
MODEL_GENERAL = "llama3:instruct"
RAVEN_PROMPT_FUNC = """You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on."
{raven_tools}
{history}
User Query: Question: {input}<human_end>
"""
HERMES_PROMPT_FUNC = """
<|im_start|>system
You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on.<|im_end|>
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"""
def get_prompt(template, input, history, tools):
# "vehicle_status": vehicle_status_fn()[0]
kwargs = {"history": history, "input": input}
prompt = "<human>:\n"
for tool in tools:
func_signature, func_docstring = tool.description.split(" - ", 1)
prompt += f'Function:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
kwargs["raven_tools"] = prompt
if history:
kwargs["history"] = f"Previous conversation history:{history}\n"
return template.format(**kwargs).replace("{{", "{").replace("}}", "}")
def use_tool(func_name, kwargs, tools):
for tool in tools:
if tool.name == func_name:
return tool.invoke(input=kwargs)
return None
# llm = Ollama(model="nexusraven", stop=["\nReflection:", "\nThought:"], keep_alive=60*10)
# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00:00" for i in range(24)]
def search_along_route(query=""):
"""Search for points of interest along the route/way to the destination.
Args:
query (str, optional): The type of point of interest to search for. Defaults to "restaurant".
"""
points = global_context["route_points"]
# maybe reshape
return search_along_route_w_coordinates(points, query)
def set_time(time_picker):
vehicle.time = time_picker
return vehicle.model_dump_json()
def get_vehicle_status(state):
return state.value["vehicle"].model_dump_json()
tools = [
StructuredTool.from_function(get_weather),
StructuredTool.from_function(find_route),
StructuredTool.from_function(vehicle_status_fn),
StructuredTool.from_function(search_points_of_interests),
StructuredTool.from_function(search_along_route),
StructuredTool.from_function(date_time_info),
StructuredTool.from_function(get_weather_current_location),
StructuredTool.from_function(code_interpreter),
# StructuredTool.from_function(do_anything_else),
]
def run_generic_model(query):
print(f"Running the generic model with query: {query}")
data = {
"prompt": f"Answer the question below in a short and concise manner.\n{query}",
"model": MODEL_GENERAL,
"options": {
# "temperature": 0.1,
# "stop":["\nReflection:", "\nThought:"]
},
}
out = ollama.generate(**data)
return out["response"]
def clear_history():
history.clear()
def run_nexusraven_model(query, voice_character):
global_context["prompt"] = get_prompt(RAVEN_PROMPT_FUNC, query, "", tools)
print("Prompt: ", global_context["prompt"])
data = {
"prompt": global_context["prompt"],
# "streaming": False,
"model": "nexusraven",
# "model": "smangrul/llama-3-8b-instruct-function-calling",
"raw": True,
"options": {"temperature": 0.5, "stop": ["\nReflection:", "\nThought:"]},
}
out = ollama.generate(**data)
llm_response = out["response"]
if "Call: " in llm_response:
print(f"llm_response: {llm_response}")
llm_response = llm_response.replace("<bot_end>", " ")
func_name, kwargs = extract_func_args(llm_response)
print(f"Function: {func_name}, Args: {kwargs}")
if func_name == "do_anything_else":
output_text = run_generic_model(query)
else:
output_text = use_tool(func_name, kwargs, tools)
else:
output_text = out["response"]
if type(output_text) == tuple:
output_text = output_text[0]
gr.Info(f"Output text: {output_text}, generating voice output...")
return (
output_text,
tts_gradio(output_text, voice_character, speaker_embedding_cache)[0],
)
def run_llama3_model(query, voice_character):
output_text = process_query(query, history, tools)
gr.Info(f"Output text: {output_text}, generating voice output...")
# voice_out = tts_gradio(output_text, voice_character, speaker_embedding_cache)[0]
voice_out = None
return (
output_text,
voice_out,
)
def run_model(query, voice_character, state):
model = state.get("model", "nexusraven")
query = query.strip().replace("'", "")
print("Query: ", query)
print("Model: ", model)
global_context["query"] = query
if model == "nexusraven":
return run_nexusraven_model(query, voice_character)
elif model == "llama3":
return run_llama3_model(query, voice_character)
return "Error running model", None
def calculate_route_gradio(origin, destination):
vehicle_status, points = calculate_route(origin, destination)
plot = kitt_utils.plot_route(points, vehicle=vehicle.location_coordinates)
global_context["route_points"] = points
vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
return plot, vehicle_status, 0
def update_vehicle_status(trip_progress, origin, destination):
if not global_context["route_points"]:
vehicle_status, points = calculate_route(origin, destination)
global_context["route_points"] = points
n_points = len(global_context["route_points"])
index = min(int(trip_progress / 100 * n_points), n_points - 1)
print(f"Trip progress: {trip_progress} len: {n_points}, index: {index}")
new_coords = global_context["route_points"][index]
new_coords = new_coords["latitude"], new_coords["longitude"]
print(f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}")
vehicle.location_coordinates = new_coords
vehicle.location = ""
plot = kitt_utils.plot_route(
global_context["route_points"], vehicle=vehicle.location_coordinates
)
return vehicle.model_dump_json(), plot
device = "cuda" if torch.cuda.is_available() else "cpu"
transcriber = pipeline(
"automatic-speech-recognition", model="openai/whisper-base.en", device=device
)
def save_audio_as_wav(data, sample_rate, file_path):
# make a tensor from the numpy array
data = torch.tensor(data).reshape(1, -1)
torchaudio.save(
file_path, data, sample_rate=sample_rate, bits_per_sample=16, encoding="PCM_S"
)
def save_and_transcribe_audio(audio):
try:
# capture the audio and save it to a file as wav or mp3
# file_name = save("audioinput.wav")
sr, y = audio
# y = y.astype(np.float32)
# y /= np.max(np.abs(y))
# add timestamp to file name
filename = f"recordings/audio{time.time()}.wav"
save_audio_as_wav(y, sr, filename)
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
text = transcriber({"sampling_rate": sr, "raw": y})["text"]
gr.Info(f"Transcribed text is: {text}\nProcessing the input...")
except Exception as e:
print(f"Error: {e}")
return "Error transcribing audio."
return text
def save_and_transcribe_run_model(audio, voice_character, state):
text = save_and_transcribe_audio(audio)
out_text, out_voice = run_model(text, voice_character, state)
return text, out_text, out_voice
# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome
# example question:
# what's the weather like outside?
# What's the closest restaurant from here?
def create_demo(tts_server: bool = False, model="llama3", tts=True):
print(f"Running the demo with model: {model} and TTSServer: {tts_server}")
with gr.Blocks(theme=gr.themes.Default()) as demo:
state = gr.State(
value={
# "context": initial_context,
"query": "",
"route_points": [],
"model": model,
"tts": tts,
}
)
trip_points = gr.State(value=[])
with gr.Row():
with gr.Column(scale=1, min_width=300):
time_picker = gr.Dropdown(
choices=hour_options,
label="What time is it? (HH:MM)",
value="08:00:00",
interactive=True,
)
history = gr.Radio(
["Yes", "No"],
label="Maintain the conversation history?",
value="No",
interactive=True,
)
voice_character = gr.Radio(
choices=voice_options,
label="Choose a voice",
value=voice_options[0],
show_label=True,
)
origin = gr.Textbox(
value="Mondorf-les-Bains, Luxembourg",
label="Origin",
interactive=True,
)
destination = gr.Textbox(
value="Rue Alphonse Weicker, Luxembourg",
label="Destination",
interactive=True,
)
with gr.Column(scale=2, min_width=600):
map_plot = gr.Plot()
trip_progress = gr.Slider(
0, 100, step=5, label="Trip progress", interactive=True
)
# map_if = gr.Interface(fn=plot_map, inputs=year_input, outputs=map_plot)
with gr.Row():
with gr.Column():
input_audio = gr.Audio(
type="numpy",
sources=["microphone"],
label="Input audio",
elem_id="input_audio",
)
input_text = gr.Textbox(
value="How is the weather?", label="Input text", interactive=True
)
with gr.Accordion("Debug"):
input_audio_debug = gr.Audio(
type="numpy",
sources=["microphone"],
label="Input audio",
elem_id="input_audio",
)
input_text_debug = gr.Textbox(
value="How is the weather?",
label="Input text",
interactive=True,
)
vehicle_status = gr.JSON(
value=vehicle.model_dump_json(), label="Vehicle status"
)
# Push button
clear_history_btn = gr.Button(value="Clear History")
with gr.Column():
output_audio = gr.Audio(label="output audio", autoplay=True)
output_text = gr.TextArea(
value="", label="Output text", interactive=False
)
# Update plot based on the origin and destination
# Sets the current location and destination
origin.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status, trip_progress],
)
destination.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status, trip_progress],
)
# Update time based on the time picker
time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])
# Run the model if the input text is changed
input_text.submit(
fn=run_model,
inputs=[input_text, voice_character, state],
outputs=[output_text, output_audio],
)
input_text_debug.submit(
fn=run_model,
inputs=[input_text, voice_character, state],
outputs=[output_text, output_audio],
)
# Set the vehicle status based on the trip progress
trip_progress.release(
fn=update_vehicle_status,
inputs=[trip_progress, origin, destination],
outputs=[vehicle_status, map_plot],
)
# Save and transcribe the audio
input_audio.stop_recording(
fn=save_and_transcribe_run_model, inputs=[input_audio, voice_character, state], outputs=[input_text, output_text, output_audio]
)
input_audio_debug.stop_recording(
fn=save_and_transcribe_audio, inputs=[input_audio_debug], outputs=[input_text_debug]
)
# Clear the history
clear_history_btn.click(fn=clear_history, inputs=[], outputs=[])
return demo
# close all interfaces open to make the port available
gr.close_all()
demo = create_demo(False, "llama3", tts=False)
demo.launch(
debug=True,
server_name="0.0.0.0",
server_port=7860,
ssl_verify=False,
share=False,
)
app = typer.Typer()
@app.command()
def run(tts_server: bool = False):
global demo
demo = create_demo(tts_server)
demo.launch(
debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=True, share=True
)
@app.command()
def dev(tts_server: bool = False, model: str = "llama3"):
demo = create_demo(tts_server, model)
demo.launch(
debug=True,
server_name="0.0.0.0",
server_port=7860,
ssl_verify=False,
share=False,
)
if __name__ == "__main__":
app()
|