File size: 171,673 Bytes
cb47347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### libraries import"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true,
    "id": "oOnNfKjX4IAV"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
      "  _torch_pytree._register_pytree_node(\n",
      "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
      "  _torch_pytree._register_pytree_node(\n",
      "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
      "  _torch_pytree._register_pytree_node(\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "\n",
    "#gradio interface\n",
    "import gradio as gr\n",
    "\n",
    "from transformers import AutoModelForCausalLM,AutoTokenizer\n",
    "import torch\n",
    "\n",
    "#STT (speech to text)\n",
    "from transformers import WhisperProcessor, WhisperForConditionalGeneration\n",
    "import librosa\n",
    "\n",
    "#TTS (text to speech)\n",
    "import torch\n",
    "\n",
    "#regular expressions\n",
    "import re\n",
    "\n",
    "#langchain and function calling\n",
    "from typing import List, Literal, Union\n",
    "import requests\n",
    "from functools import partial\n",
    "import math\n",
    "\n",
    "\n",
    "#langchain, not used anymore since I had to find another way fast to stop using the endpoint, but could be interesting to reuse \n",
    "from langchain.tools.base import StructuredTool\n",
    "from langchain.schema import AgentAction, AgentFinish, OutputParserException\n",
    "from langchain.prompts import StringPromptTemplate\n",
    "\n",
    "\n",
    "\n",
    "from datetime import datetime, timedelta, timezone\n",
    "from transformers import pipeline\n",
    "import inspect"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.memory import ConversationSummaryBufferMemory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load api key from .env file\n",
    "# weather api and tomtom api key\n",
    "from dotenv import load_dotenv\n",
    "load_dotenv()\n",
    "WHEATHER_API_KEY = os.getenv(\"WEATHER_API_KEY\")\n",
    "TOMTOM_KEY = os.getenv(\"TOMTOM_API_KEY\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from apis import *"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Models loads"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.llms import Ollama\n",
    "# https://github.com/ollama/ollama/blob/main/docs/api.md\n",
    "\n",
    "llm = Ollama(model=\"nexusraven\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "from skills import execute_function_call"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "get_weather(**{'location': '49.611622,6.131935'})\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Dry run successful'"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "execute_function_call(\"Call: get_weather(location='49.611622,6.131935') \", dry_run=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Function calling with NexusRaven "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "import skills\n",
    "from skills import get_weather, get_forecast, find_route"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OPTION:\n",
      "<func_start>get_weather(location: str = '', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Returns the CURRENT weather in a specified location.\n",
      "Args:\n",
      "location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Returns the weather forecast in a specified number of days for a specified city .\n",
      "Args:\n",
      "city_name (string) : Required. The name of the city.\n",
      "when (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
      ":param lat_depart (string):  latitude of depart\n",
      ":param lon_depart (string):  longitude of depart\n",
      ":param city_depart (string): Required. city of depart\n",
      ":param address_destination (string): Required. The destination\n",
      ":param depart_time (string):  departure hour, in the format '08:00:20'.\n",
      "<docstring_end>\n"
     ]
    }
   ],
   "source": [
    "print(skills.SKILLS_PROMPT)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Moved to skills/__init__.py here only for experimentation\n",
    "def format_functions_for_prompt_raven(*functions):\n",
    "    formatted_functions = []\n",
    "    for func in functions:\n",
    "        signature = f\"{func.__name__}{inspect.signature(func)}\"\n",
    "        docstring = inspect.getdoc(func)\n",
    "        formatted_functions.append(\n",
    "            f\"OPTION:\\n<func_start>{signature}<func_end>\\n<docstring_start>\\n{docstring}\\n<docstring_end>\"\n",
    "        )\n",
    "    return \"\\n\".join(formatted_functions)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "formatted_prompt = format_functions_for_prompt_raven(get_weather, find_points_of_interest, find_route, get_forecast, search_along_route)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OPTION:\n",
      "<func_start>get_weather(location: str = '', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Returns the CURRENT weather in a specified location.\n",
      "Args:\n",
      "location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>find_points_of_interest(lat='0', lon='0', city='', type_of_poi='restaurant', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Return some of the closest points of interest for a specific location and type of point of interest. The more parameters there are, the more precise.\n",
      ":param lat (string):  latitude\n",
      ":param lon (string):  longitude\n",
      ":param city (string): Required. city\n",
      ":param type_of_poi (string): Required. type of point of interest depending on what the user wants to do.\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
      ":param lat_depart (string):  latitude of depart\n",
      ":param lon_depart (string):  longitude of depart\n",
      ":param city_depart (string): Required. city of depart\n",
      ":param address_destination (string): Required. The destination\n",
      ":param depart_time (string):  departure hour, in the format '08:00:20'.\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Returns the weather forecast in a specified number of days for a specified city .\n",
      "Args:\n",
      "city_name (string) : Required. The name of the city.\n",
      "when (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>search_along_route(latitude_depart, longitude_depart, city_destination, type_of_poi)<func_end>\n",
      "<docstring_start>\n",
      "Return some of the closest points of interest along the route from the depart point, specified by its coordinates and a city destination.\n",
      ":param latitude_depart (string):  Required. Latitude of depart location\n",
      ":param longitude_depart (string):  Required. Longitude of depart location\n",
      ":param city_destination (string): Required. City destination\n",
      ":param type_of_poi (string): Required. type of point of interest depending on what the user wants to do.\n",
      "<docstring_end>\n"
     ]
    }
   ],
   "source": [
    "print(formatted_prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.prompts import PromptTemplate, PipelinePromptTemplate\n",
    "from langchain.memory import ChatMessageHistory\n",
    "from langchain_core.messages import AIMessage, HumanMessage, SystemMessage"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = PromptTemplate.from_template(\"What is the weather in {location}?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "status_template = \"\"\"\n",
    "car coordinates: lat:{lat}, lon:{lon}\n",
    "current weather: {weather}\n",
    "current temperature: {temperature}\n",
    "current time: {time}\n",
    "current date: {date}\n",
    "destination: {destination}\n",
    "\"\"\"\n",
    "status_prompt = PromptTemplate.from_template(status_template)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "PromptTemplate(input_variables=['date', 'destination', 'lat', 'lon', 'temperature', 'time', 'weather'], template='\\ncar coordinates: lat:{lat}, lon:{lon}\\ncurrent weather: {weather}\\ncurrent temperature: {temperature}\\ncurrent time: {time}\\ncurrent date: {date}\\ndestination: {destination}\\n')"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "status_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = SystemMessage(content=\"You are a nice pirate\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "full_template = \"\"\"\n",
    "<human>\n",
    "\n",
    "{skills}\n",
    "\n",
    "Current status of the vehicle:\n",
    "{status}\n",
    "\n",
    "User Query: Question: {question}\n",
    "\n",
    "\n",
    "Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\n",
    "\"\"\"\n",
    "full_prompt = PromptTemplate.from_template(full_template)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "question_prompt = HumanMessage(content=\"How is the weather in Paris?\")\n",
    "input_prompts = [\n",
    "    # (\"skills\", skills.SKILLS_PROMPT),\n",
    "    (\"status\", status_prompt),\n",
    "    # (\"question\", question_prompt),\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "pipeline_prompt = PipelinePromptTemplate(\n",
    "  final_prompt=full_prompt, \n",
    "  pipeline_prompts=input_prompts\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "PipelinePromptTemplate(input_variables=['date', 'time', 'weather', 'lon', 'lat', 'destination', 'temperature'], final_prompt=PromptTemplate(input_variables=['question', 'skills', 'status'], template='\\n<human>\\n\\n{skills}\\n\\nCurrent status of the vehicle:\\n{status}\\n\\nUser Query: Question: {question}\\n\\n\\nPlease pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\\n'), pipeline_prompts=[('status', PromptTemplate(input_variables=['date', 'destination', 'lat', 'lon', 'temperature', 'time', 'weather'], template='\\ncar coordinates: lat:{lat}, lon:{lon}\\ncurrent weather: {weather}\\ncurrent temperature: {temperature}\\ncurrent time: {time}\\ncurrent date: {date}\\ndestination: {destination}\\n'))])"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pipeline_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "history = ChatMessageHistory()\n",
    "history.add_message(question_prompt)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "ChatMessageHistory(messages=[HumanMessage(content='How is the weather in Paris?')])"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "history"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [],
   "source": [
    "history.add_ai_message(pipeline_prompt.format(\n",
    "    date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
    "    time=datetime.now().strftime(\"%H:%M:%S\"),\n",
    "    weather=\"sunny\",\n",
    "    temperature=\"20°C\",\n",
    "    destination=\"Paris\",\n",
    "    lat=\"48.8566\",\n",
    "    lon=\"2.3522\",\n",
    "    question=\"How is the weather in Paris?\",\n",
    "    # status=status,\n",
    "    skills=skills.SKILLS_PROMPT,\n",
    "    # system=system,\n",
    "    # query=question,\n",
    "  ))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AIMessage(content=\"\\n<human>\\n\\nOPTION:\\n<func_start>get_weather(location: str = '', **kwargs)<func_end>\\n<docstring_start>\\nReturns the CURRENT weather in a specified location.\\nArgs:\\nlocation (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\\n<docstring_end>\\nOPTION:\\n<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\\n<docstring_start>\\nReturns the weather forecast in a specified number of days for a specified city .\\nArgs:\\ncity_name (string) : Required. The name of the city.\\nwhen (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\\n<docstring_end>\\nOPTION:\\n<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\\n<docstring_start>\\nReturn the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\\n:param lat_depart (string):  latitude of depart\\n:param lon_depart (string):  longitude of depart\\n:param city_depart (string): Required. city of depart\\n:param address_destination (string): Required. The destination\\n:param depart_time (string):  departure hour, in the format '08:00:20'.\\n<docstring_end>\\n\\nCurrent status of the vehicle:\\n\\ncar coordinates: lat:48.8566, lon:2.3522\\ncurrent weather: sunny\\ncurrent temperature: 20°C\\ncurrent time: 17:04:03\\ncurrent date: 2024-04-30\\ndestination: Paris\\n\\n\\nUser Query: Question: How is the weather in Paris?\\n\\n\\nPlease pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\\n\")"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "history.messages[-1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "<human>\n",
      "\n",
      "OPTION:\n",
      "<func_start>get_weather(location: str = '', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Returns the CURRENT weather in a specified location.\n",
      "Args:\n",
      "location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Returns the weather forecast in a specified number of days for a specified city .\n",
      "Args:\n",
      "city_name (string) : Required. The name of the city.\n",
      "when (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\n",
      "<docstring_end>\n",
      "OPTION:\n",
      "<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
      ":param lat_depart (string):  latitude of depart\n",
      ":param lon_depart (string):  longitude of depart\n",
      ":param city_depart (string): Required. city of depart\n",
      ":param address_destination (string): Required. The destination\n",
      ":param depart_time (string):  departure hour, in the format '08:00:20'.\n",
      "<docstring_end>\n",
      "\n",
      "Current status of the vehicle:\n",
      "\n",
      "car coordinates: lat:48.8566, lon:2.3522\n",
      "current weather: sunny\n",
      "current temperature: 20°C\n",
      "current time: 17:04:04\n",
      "current date: 2024-04-30\n",
      "destination: Paris\n",
      "\n",
      "\n",
      "User Query: Question: How is the weather in Paris?\n",
      "\n",
      "\n",
      "Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(\n",
    "  pipeline_prompt.format(\n",
    "    date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
    "    time=datetime.now().strftime(\"%H:%M:%S\"),\n",
    "    weather=\"sunny\",\n",
    "    temperature=\"20°C\",\n",
    "    destination=\"Paris\",\n",
    "    lat=\"48.8566\",\n",
    "    lon=\"2.3522\",\n",
    "    question=\"How is the weather in Paris?\",\n",
    "    # status=status,\n",
    "    skills=skills.SKILLS_PROMPT,\n",
    "    # system=system,\n",
    "    # query=question,\n",
    "  )\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.llms import Ollama\n",
    "\n",
    "llm = Ollama(model=\"nexusraven\", stop=[\"\\nReflection:\", \"\\nThought:\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "chain = pipeline_prompt | llm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [],
   "source": [
    "q = dict(\n",
    "    date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
    "    time=datetime.now().strftime(\"%H:%M:%S\"),\n",
    "    weather=\"sunny\",\n",
    "    temperature=\"20°C\",\n",
    "    destination=\"Paris\",\n",
    "    lat=\"48.8566\",\n",
    "    lon=\"2.3522\",\n",
    "    question=\"How is the weather in Paris?\",\n",
    "    # status=status,\n",
    "    skills=skills.SKILLS_PROMPT,\n",
    "    # system=system,\n",
    "    # query=question,\n",
    "  )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [],
   "source": [
    "out_1 = chain.invoke(q)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "http://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Paris&aqi=no\n",
      "http://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Paris&aqi=no\n"
     ]
    }
   ],
   "source": [
    "func_out_1 = execute_function_call(out_1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'The current weather in Paris, Ile-de-France, France is Light rain with a temperature of 17.0°C that feels like 17.0°C. Humidity is at 68%. Wind speed is 12.5 mph.'"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "func_out_1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.runnables.history import RunnableWithMessageHistory\n",
    "from langchain.agents import create_self_ask_with_search_agent"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Test Langchain Agent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.prompts import PromptTemplate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import langchain\n",
    "langchain.debug=False\n",
    "from skills import get_weather, find_route, get_forecast"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Union, List\n",
    "\n",
    "from langchain.chains import LLMChain\n",
    "from langchain.prompts import StringPromptTemplate\n",
    "from langchain.tools.base import StructuredTool\n",
    "from langchain.schema import AgentAction, AgentFinish, OutputParserException\n",
    "from skills import extract_func_args\n",
    "from langchain.agents import (\n",
    "    Tool,\n",
    "    AgentExecutor,\n",
    "    LLMSingleActionAgent,\n",
    "    AgentOutputParser,\n",
    ")\n",
    "\n",
    "# https://github.com/nexusflowai/NexusRaven/blob/main/scripts/langchain_example.py\n",
    "class RavenOutputParser(AgentOutputParser):\n",
    "    def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
    "        print(f\"llm_output: {llm_output}\")\n",
    "        if \"Call: \" in llm_output:\n",
    "            # llm_output = llm_output.replace(\"Initial Answer: \", \"Call: \")\n",
    "            func_name, args = extract_func_args(llm_output)\n",
    "            return AgentAction(\n",
    "                tool=func_name,\n",
    "                tool_input=args,\n",
    "                log=f\"Calling {func_name} with args: {args}\",\n",
    "            )\n",
    "\n",
    "        # Check if agent should finish\n",
    "        # if \"Initial Answer:\" in llm_output:\n",
    "        #     return AgentFinish(\n",
    "        #         return_values={\n",
    "        #             \"output\": llm_output.strip()\n",
    "        #             .split(\"\\n\")[1]\n",
    "        #             .replace(\"Initial Answer: \", \"\")\n",
    "        #             .strip()\n",
    "        #         },\n",
    "        #         log=llm_output,\n",
    "        #     )\n",
    "        \n",
    "        return AgentFinish(\n",
    "                return_values={\n",
    "                    \"output\": llm_output.strip()\n",
    "                },\n",
    "                log=llm_output,\n",
    "        )\n",
    "        # else:\n",
    "        #    raise OutputParserException(f\"Could not parse LLM output: `{llm_output}`\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "tools = [\n",
    "    StructuredTool.from_function(get_weather),\n",
    "    StructuredTool.from_function(find_route),\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "RAVEN_PROMPT_FUNC = \"\"\"You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\n",
    "{raven_tools}\n",
    "\n",
    "Current status of the vehicle:\n",
    "{status}\n",
    "\n",
    "Previous conversation history:\n",
    "{history}\n",
    "\n",
    "User Query: Question: {input}\n",
    "\n",
    "If it helps to answer the question please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\"\"\"\n",
    "\n",
    "RAVEN_PROMPT_ANS = \"\"\"\n",
    "<human>\n",
    "You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\n",
    "\n",
    "Current status of the vehicle:\n",
    "{status}\n",
    "\n",
    "Previous conversation history:\n",
    "{history}\n",
    "\n",
    "User Query: Question: {input}\n",
    "\n",
    "Observation:{observation}\n",
    "\n",
    "Please respond in natural language. Do not refer to the provided context in your response.<human_end>\n",
    "\n",
    "Answer: \"\"\"\n",
    "\n",
    "\n",
    "STATUS_TEMPLATE = \"\"\"\n",
    "car coordinates: lat:{lat}, lon:{lon}\n",
    "current time: {time}\n",
    "current date: {date}\n",
    "destination: {destination}\n",
    "\"\"\"\n",
    "status_prompt = PromptTemplate.from_template(STATUS_TEMPLATE)\n",
    "\n",
    "class RavenPromptTemplate(StringPromptTemplate):\n",
    "    template_func: str\n",
    "    template_ans: str\n",
    "    status_prompt: PromptTemplate\n",
    "    # The list of tools available\n",
    "    tools: List[Tool]\n",
    "\n",
    "    def format(self, **kwargs) -> str:\n",
    "        print(f\"kwargs: {kwargs}\")\n",
    "        intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
    "        # if \"input\" in kwargs and type(kwargs[\"input\"]) == dict:\n",
    "        #     inputs = kwargs[\"input\"]\n",
    "        #     kwargs[\"status\"] = inputs[\"status\"]\n",
    "        #     kwargs[\"input\"] = inputs[\"input\"]\n",
    "\n",
    "        if intermediate_steps:\n",
    "            step = intermediate_steps[-1]\n",
    "            prompt = json.dumps(step[1][1], indent=4)\n",
    "            kwargs[\"observation\"] = prompt\n",
    "            pp = self.template_ans.format(**kwargs).replace(\"{{\", \"{\").replace(\"}}\", \"}\")\n",
    "            return pp\n",
    "\n",
    "        if \"status\" in kwargs:\n",
    "            kwargs[\"status\"] = self.status_prompt.format(**kwargs[\"status\"])\n",
    "\n",
    "        prompt = \"<human>:\\n\"\n",
    "        for tool in self.tools:\n",
    "            func_signature, func_docstring = tool.description.split(\" - \", 1)\n",
    "            prompt += f'\\Function:\\n<func_start>def {func_signature}<func_end>\\n<docstring_start>\\n\"\"\"\\n{func_docstring}\\n\"\"\"\\n<docstring_end>\\n'\n",
    "        kwargs[\"raven_tools\"] = prompt\n",
    "        pp = self.template_func.format(**kwargs).replace(\"{{\", \"{\").replace(\"}}\", \"}\")\n",
    "        return pp\n",
    "\n",
    "\n",
    "raven_prompt = RavenPromptTemplate(\n",
    "    template_func=RAVEN_PROMPT_FUNC,\n",
    "    template_ans=RAVEN_PROMPT_ANS,\n",
    "    status_prompt=status_prompt,\n",
    "    tools=tools,\n",
    "    input_variables=[\"input\", \"status\", \"history\", \"intermediate_steps\"],\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.memory import ConversationBufferWindowMemory\n",
    "memory = ConversationBufferWindowMemory(k=2, input_key=\"input\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.llms import Ollama\n",
    "\n",
    "# llm = Ollama(model=\"new-nexus\")\n",
    "llm = Ollama(model=\"nexusraven\")\n",
    "output_parser = RavenOutputParser()\n",
    "llm_chain = LLMChain(llm=llm, prompt=raven_prompt)\n",
    "agent = LLMSingleActionAgent(\n",
    "    llm_chain=llm_chain,\n",
    "    output_parser=output_parser,\n",
    "    stop=[\"\\nReflection:\", \"\\nThought:\"],\n",
    "    # stop=[\"\\nReflection:\"],\n",
    "    allowed_tools=tools,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [],
   "source": [
    "agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, memory=memory, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AgentExecutor(memory=ConversationBufferWindowMemory(input_key='input', k=2), verbose=True, agent=LLMSingleActionAgent(llm_chain=LLMChain(prompt=RavenPromptTemplate(input_variables=['input', 'status', 'history', 'intermediate_steps'], template_func='You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n{raven_tools}\\n\\nCurrent status of the vehicle:\\n{status}\\n\\nPrevious conversation history:\\n{history}\\n\\nUser Query: Question: {input}\\n\\nIf it helps to answer the question please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>', template_ans='\\n<human>\\nYou are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n\\nCurrent status of the vehicle:\\n{status}\\n\\nPrevious conversation history:\\n{history}\\n\\nUser Query: Question: {input}\\n\\nObservation:{observation}\\n\\nPlease respond in natural language. Do not refer to the provided context in your response.<human_end>\\n\\nAnswer: ', status_prompt=PromptTemplate(input_variables=['date', 'destination', 'lat', 'lon', 'time'], template='\\ncar coordinates: lat:{lat}, lon:{lon}\\ncurrent time: {time}\\ncurrent date: {date}\\ndestination: {destination}\\n'), tools=[Tool(name='get_weather', description=\"get_weather(location: str = '', **kwargs) - Returns the CURRENT weather in a specified location.\\n    Args:\\n    location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\", args_schema=<class 'pydantic.v1.main.get_weatherSchema'>, func=<function get_weather at 0x114073a60>), Tool(name='find_route', description=\"find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs) - Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\\n    :param lat_depart (string):  latitude of depart\\n    :param lon_depart (string):  longitude of depart\\n    :param city_depart (string): Required. city of depart\\n    :param address_destination (string): Required. The destination\\n    :param depart_time (string):  departure hour, in the format '08:00:20'.\", args_schema=<class 'pydantic.v1.main.find_routeSchema'>, func=<function find_route at 0x114073920>)]), llm=Ollama(model='nexusraven')), output_parser=RavenOutputParser(), stop=['\\nReflection:', '\\nThought:']), tools=[StructuredTool(name='get_weather', description=\"get_weather(location: str = '', **kwargs) - Returns the CURRENT weather in a specified location.\\n    Args:\\n    location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\", args_schema=<class 'pydantic.v1.main.get_weatherSchema'>, func=<function get_weather at 0x114073a60>), StructuredTool(name='find_route', description=\"find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs) - Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\\n    :param lat_depart (string):  latitude of depart\\n    :param lon_depart (string):  longitude of depart\\n    :param city_depart (string): Required. city of depart\\n    :param address_destination (string): Required. The destination\\n    :param depart_time (string):  departure hour, in the format '08:00:20'.\", args_schema=<class 'pydantic.v1.main.find_routeSchema'>, func=<function find_route at 0x114073920>)])"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent_chain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datetime import datetime\n",
    "\n",
    "status = dict(\n",
    "    date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
    "    time=datetime.now().strftime(\"%H:%M:%S\"),\n",
    "    # temperature=\"20°C\",\n",
    "    destination=\"Kirchberg, Luxembourg\",\n",
    "    lat=\"48.8566\",\n",
    "    lon=\"2.3522\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "kwargs: {'input': 'How is the weather in Luxembourg?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': '', 'intermediate_steps': []}\n",
      "llm_output:  \n",
      "Call: get_weather(location='Luxembourg') \n",
      "\u001b[32;1m\u001b[1;3mCalling get_weather with args: {'location': 'Luxembourg'}\u001b[0mhttp://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Luxembourg&aqi=no\n",
      "\n",
      "\n",
      "Reflection:\u001b[36;1m\u001b[1;3m('The current weather in Luxembourg, Luxembourg, Luxembourg is Moderate or heavy rain with thunder with a temperature of 15.0°C that feels like 13.7°C. Humidity is at 82%. Wind speed is 28.1 kph.', {'location': {'name': 'Luxembourg', 'region': 'Luxembourg', 'country': 'Luxembourg', 'lat': 49.61, 'lon': 6.13, 'tz_id': 'Europe/Luxembourg', 'localtime_epoch': 1714656936, 'localtime': '2024-05-02 15:35'}, 'current': {'last_updated': '2024-05-02 15:30', 'temp_c': 15.0, 'condition': {'text': 'Moderate or heavy rain with thunder'}, 'wind_kph': 28.1, 'wind_dir': 'WSW', 'precip_mm': 1.01, 'precip_in': 0.04, 'humidity': 82, 'cloud': 75, 'feelslike_c': 13.7}})\u001b[0m\n",
      "kwargs: {'input': 'How is the weather in Luxembourg?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': '', 'intermediate_steps': [(AgentAction(tool='get_weather', tool_input={'location': 'Luxembourg'}, log=\"Calling get_weather with args: {'location': 'Luxembourg'}\"), ('The current weather in Luxembourg, Luxembourg, Luxembourg is Moderate or heavy rain with thunder with a temperature of 15.0°C that feels like 13.7°C. Humidity is at 82%. Wind speed is 28.1 kph.', {'location': {'name': 'Luxembourg', 'region': 'Luxembourg', 'country': 'Luxembourg', 'lat': 49.61, 'lon': 6.13, 'tz_id': 'Europe/Luxembourg', 'localtime_epoch': 1714656936, 'localtime': '2024-05-02 15:35'}, 'current': {'last_updated': '2024-05-02 15:30', 'temp_c': 15.0, 'condition': {'text': 'Moderate or heavy rain with thunder'}, 'wind_kph': 28.1, 'wind_dir': 'WSW', 'precip_mm': 1.01, 'precip_in': 0.04, 'humidity': 82, 'cloud': 75, 'feelslike_c': 13.7}}))]}\n",
      "llm_output: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\n",
      "\u001b[32;1m\u001b[1;3mThe weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "call = agent_chain.run(\n",
    "    input=\"How is the weather in Luxembourg?\",\n",
    "    status= status\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'The current weather conditions in Tokyo are partly cloudy, with a temperature of 17 degrees Celsius and a wind speed of 17.4 miles per hour.'"
      ]
     },
     "execution_count": 93,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "call"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "kwargs: {'input': 'How about in Tokyo?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': 'Human: How is the weather in Luxembourg?\\nAI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.', 'intermediate_steps': []}\n",
      "You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\n",
      "<human>:\n",
      "\\Function:\n",
      "<func_start>def get_weather(location: str = '', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "\"\"\"\n",
      "Returns the CURRENT weather in a specified location.\n",
      "    Args:\n",
      "    location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
      "\"\"\"\n",
      "<docstring_end>\n",
      "\\Function:\n",
      "<func_start>def find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
      "<docstring_start>\n",
      "\"\"\"\n",
      "Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
      "    :param lat_depart (string):  latitude of depart\n",
      "    :param lon_depart (string):  longitude of depart\n",
      "    :param city_depart (string): Required. city of depart\n",
      "    :param address_destination (string): Required. The destination\n",
      "    :param depart_time (string):  departure hour, in the format '08:00:20'.\n",
      "\"\"\"\n",
      "<docstring_end>\n",
      "\n",
      "\n",
      "Current status of the vehicle:\n",
      "{'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}\n",
      "\n",
      "Previous conversation history:\n",
      "Human: How is the weather in Luxembourg?\n",
      "AI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\n",
      "\n",
      "User Query: Question: How about in Tokyo?\n",
      "\n",
      "If it helps to answer the question please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\n",
      "llm_output: Call: get_weather(location='Tokyo') \n",
      "\u001b[32;1m\u001b[1;3mCalling get_weather with args: {'location': 'Tokyo'}\u001b[0mhttp://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Tokyo&aqi=no\n",
      "\n",
      "\n",
      "Reflection:\u001b[36;1m\u001b[1;3m('The current weather in Tokyo, Tokyo, Japan is Clear with a temperature of 14.2°C that feels like 13.5°C. Humidity is at 69%. Wind speed is 6.1 kph.', {'location': {'name': 'Tokyo', 'region': 'Tokyo', 'country': 'Japan', 'lat': 35.69, 'lon': 139.69, 'tz_id': 'Asia/Tokyo', 'localtime_epoch': 1714657466, 'localtime': '2024-05-02 22:44'}, 'current': {'last_updated': '2024-05-02 22:30', 'temp_c': 14.2, 'condition': {'text': 'Clear'}, 'wind_kph': 6.1, 'wind_dir': 'W', 'precip_mm': 0.0, 'precip_in': 0.0, 'humidity': 69, 'cloud': 0, 'feelslike_c': 13.5}})\u001b[0m\n",
      "kwargs: {'input': 'How about in Tokyo?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': 'Human: How is the weather in Luxembourg?\\nAI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.', 'intermediate_steps': [(AgentAction(tool='get_weather', tool_input={'location': 'Tokyo'}, log=\"Calling get_weather with args: {'location': 'Tokyo'}\"), ('The current weather in Tokyo, Tokyo, Japan is Clear with a temperature of 14.2°C that feels like 13.5°C. Humidity is at 69%. Wind speed is 6.1 kph.', {'location': {'name': 'Tokyo', 'region': 'Tokyo', 'country': 'Japan', 'lat': 35.69, 'lon': 139.69, 'tz_id': 'Asia/Tokyo', 'localtime_epoch': 1714657466, 'localtime': '2024-05-02 22:44'}, 'current': {'last_updated': '2024-05-02 22:30', 'temp_c': 14.2, 'condition': {'text': 'Clear'}, 'wind_kph': 6.1, 'wind_dir': 'W', 'precip_mm': 0.0, 'precip_in': 0.0, 'humidity': 69, 'cloud': 0, 'feelslike_c': 13.5}}))]}\n",
      "llm_output: The weather in Tokyo is currently clear with a temperature of 14.2 degrees Celsius and a wind speed of 6.1 kilometers per hour. There is a 0% chance of precipitation, and the humidity is at 69%. It feels like 13.5 degrees Celsius outside.\n",
      "\u001b[32;1m\u001b[1;3mThe weather in Tokyo is currently clear with a temperature of 14.2 degrees Celsius and a wind speed of 6.1 kilometers per hour. There is a 0% chance of precipitation, and the humidity is at 69%. It feels like 13.5 degrees Celsius outside.\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "call = agent_chain.run(\n",
    "        input=\"How about in Tokyo?\",\n",
    "        status= status\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "kwargs: {'input': 'Where are we going?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': 'Human: How is the weather in Luxembourg?\\nAI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\\nHuman: How about in Tokyo?\\nAI: The weather in Tokyo is currently clear with a temperature of 14.2 degrees Celsius and a wind speed of 6.1 kilometers per hour. There is a 0% chance of precipitation, and the humidity is at 69%. It feels like 13.5 degrees Celsius outside.', 'intermediate_steps': []}\n",
      "llm_output:  \n",
      "Call: find_route(city_depart='Luxembourg', address_destination=['Kirchberg, Luxembourg']) \n",
      "\u001b[32;1m\u001b[1;3mCalling find_route with args: {'city_depart': 'Luxembourg', 'address_destination': ['Kirchberg, Luxembourg']}\u001b[0m['Kirchberg, Luxembourg']\n"
     ]
    },
    {
     "ename": "NameError",
     "evalue": "name 'check_city_coordinates' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[59], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m call \u001b[38;5;241m=\u001b[39m \u001b[43magent_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m      2\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mWhere are we going?\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      3\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstatus\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mstatus\u001b[49m\n\u001b[1;32m      4\u001b[0m \u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    144\u001b[0m     emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:550\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n\u001b[1;32m    545\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(args[\u001b[38;5;241m0\u001b[39m], callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n\u001b[1;32m    546\u001b[0m         _output_key\n\u001b[1;32m    547\u001b[0m     ]\n\u001b[1;32m    549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[0;32m--> 550\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m    551\u001b[0m         _output_key\n\u001b[1;32m    552\u001b[0m     ]\n\u001b[1;32m    554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m    555\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m    556\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supported with either positional arguments or keyword arguments,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    557\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but none were provided.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    558\u001b[0m     )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    144\u001b[0m     emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m    346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n\u001b[1;32m    347\u001b[0m \n\u001b[1;32m    348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    369\u001b[0m \u001b[38;5;124;03m        `Chain.output_keys`.\u001b[39;00m\n\u001b[1;32m    370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m    372\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n\u001b[1;32m    373\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n\u001b[1;32m    374\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n\u001b[1;32m    375\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n\u001b[1;32m    376\u001b[0m }\n\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    379\u001b[0m \u001b[43m    \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    380\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    381\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    382\u001b[0m \u001b[43m    \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    162\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 163\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m    164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m    166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    151\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n\u001b[1;32m    152\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 153\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    154\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m    155\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m    156\u001b[0m     )\n\u001b[1;32m    158\u001b[0m     final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m    159\u001b[0m         inputs, outputs, return_only_outputs\n\u001b[1;32m    160\u001b[0m     )\n\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m   1430\u001b[0m \u001b[38;5;66;03m# We now enter the agent loop (until it returns something).\u001b[39;00m\n\u001b[1;32m   1431\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_continue(iterations, time_elapsed):\n\u001b[0;32m-> 1432\u001b[0m     next_step_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1433\u001b[0m \u001b[43m        \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1434\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1435\u001b[0m \u001b[43m        \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1436\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1437\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1438\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1439\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(next_step_output, AgentFinish):\n\u001b[1;32m   1440\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_return(\n\u001b[1;32m   1441\u001b[0m             next_step_output, intermediate_steps, run_manager\u001b[38;5;241m=\u001b[39mrun_manager\n\u001b[1;32m   1442\u001b[0m         )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m   1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m   1130\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   1131\u001b[0m     name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1135\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m   1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m   1137\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m         \u001b[43m[\u001b[49m\n\u001b[1;32m   1139\u001b[0m \u001b[43m            \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m   1140\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1141\u001b[0m \u001b[43m                \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1142\u001b[0m \u001b[43m                \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1143\u001b[0m \u001b[43m                \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1144\u001b[0m \u001b[43m                \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1145\u001b[0m \u001b[43m                \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1146\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1147\u001b[0m \u001b[43m        \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m   1148\u001b[0m     )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m   1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m   1130\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   1131\u001b[0m     name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1135\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m   1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m   1137\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m         \u001b[43m[\u001b[49m\n\u001b[1;32m   1139\u001b[0m \u001b[43m            \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m   1140\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1141\u001b[0m \u001b[43m                \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1142\u001b[0m \u001b[43m                \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1143\u001b[0m \u001b[43m                \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1144\u001b[0m \u001b[43m                \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1145\u001b[0m \u001b[43m                \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1146\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1147\u001b[0m \u001b[43m        \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m   1148\u001b[0m     )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1223\u001b[0m, in \u001b[0;36mAgentExecutor._iter_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m   1221\u001b[0m     \u001b[38;5;28;01myield\u001b[39;00m agent_action\n\u001b[1;32m   1222\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m agent_action \u001b[38;5;129;01min\u001b[39;00m actions:\n\u001b[0;32m-> 1223\u001b[0m     \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_perform_agent_action\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1224\u001b[0m \u001b[43m        \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43magent_action\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\n\u001b[1;32m   1225\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1245\u001b[0m, in \u001b[0;36mAgentExecutor._perform_agent_action\u001b[0;34m(self, name_to_tool_map, color_mapping, agent_action, run_manager)\u001b[0m\n\u001b[1;32m   1243\u001b[0m         tool_run_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mllm_prefix\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1244\u001b[0m     \u001b[38;5;66;03m# We then call the tool on the tool input to get an observation\u001b[39;00m\n\u001b[0;32m-> 1245\u001b[0m     observation \u001b[38;5;241m=\u001b[39m \u001b[43mtool\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1246\u001b[0m \u001b[43m        \u001b[49m\u001b[43magent_action\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtool_input\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1247\u001b[0m \u001b[43m        \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1248\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcolor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolor\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1249\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m   1250\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mtool_run_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1251\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1252\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1253\u001b[0m     tool_run_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39magent\u001b[38;5;241m.\u001b[39mtool_run_logging_kwargs()\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/tools.py:417\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, **kwargs)\u001b[0m\n\u001b[1;32m    415\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mException\u001b[39;00m, \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    416\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_tool_error(e)\n\u001b[0;32m--> 417\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m    418\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    419\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_tool_end(observation, color\u001b[38;5;241m=\u001b[39mcolor, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/tools.py:376\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, **kwargs)\u001b[0m\n\u001b[1;32m    373\u001b[0m     parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_parse_input(tool_input)\n\u001b[1;32m    374\u001b[0m     tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_to_args_and_kwargs(parsed_input)\n\u001b[1;32m    375\u001b[0m     observation \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 376\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mtool_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mtool_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    377\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m    378\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run(\u001b[38;5;241m*\u001b[39mtool_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m    379\u001b[0m     )\n\u001b[1;32m    380\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ValidationError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    381\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error:\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/tools.py:697\u001b[0m, in \u001b[0;36mStructuredTool._run\u001b[0;34m(self, run_manager, *args, **kwargs)\u001b[0m\n\u001b[1;32m    688\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc:\n\u001b[1;32m    689\u001b[0m     new_argument_supported \u001b[38;5;241m=\u001b[39m signature(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc)\u001b[38;5;241m.\u001b[39mparameters\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    690\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m (\n\u001b[1;32m    691\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc(\n\u001b[1;32m    692\u001b[0m             \u001b[38;5;241m*\u001b[39margs,\n\u001b[1;32m    693\u001b[0m             callbacks\u001b[38;5;241m=\u001b[39mrun_manager\u001b[38;5;241m.\u001b[39mget_child() \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m    694\u001b[0m             \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m    695\u001b[0m         )\n\u001b[1;32m    696\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m new_argument_supported\n\u001b[0;32m--> 697\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    698\u001b[0m     )\n\u001b[1;32m    699\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool does not support sync\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/dev/uni/talking-car/skills/routing.py:39\u001b[0m, in \u001b[0;36mfind_route\u001b[0;34m(lat_depart, lon_depart, city_depart, address_destination, depart_time, **kwargs)\u001b[0m\n\u001b[1;32m     37\u001b[0m date \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2025-03-29T\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     38\u001b[0m departure_time \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m2024-02-01T\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m depart_time\n\u001b[0;32m---> 39\u001b[0m lat, lon, city \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_city_coordinates\u001b[49m(lat_depart,lon_depart,city_depart)\n\u001b[1;32m     40\u001b[0m lat_dest, lon_dest \u001b[38;5;241m=\u001b[39m find_coordinates(address_destination)\n\u001b[1;32m     41\u001b[0m \u001b[38;5;66;03m#print(lat_dest, lon_dest)\u001b[39;00m\n\u001b[1;32m     42\u001b[0m \n\u001b[1;32m     43\u001b[0m \u001b[38;5;66;03m#print(departure_time)\u001b[39;00m\n",
      "\u001b[0;31mNameError\u001b[0m: name 'check_city_coordinates' is not defined"
     ]
    }
   ],
   "source": [
    "call = agent_chain.run(\n",
    "        input=\"Where are we going?\",\n",
    "        status= status\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1"
      ]
     },
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "kwargs: {'input': 'How is the weather in Tokyo?', 'intermediate_steps': []}\n"
     ]
    },
    {
     "ename": "KeyError",
     "evalue": "'history'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n",
      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)\n",
      "Cell \u001b[0;32mIn[94], line 1\u001b[0m\n",
      "\u001b[0;32m----> 1\u001b[0m call \u001b[38;5;241m=\u001b[39m \u001b[43magent_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m      2\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mHow is the weather in Tokyo?\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n",
      "\u001b[1;32m      3\u001b[0m \u001b[43m)\u001b[49m\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
      "\u001b[1;32m    144\u001b[0m     emit_warning()\n",
      "\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:545\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    543\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n",
      "\u001b[1;32m    544\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supports only one positional argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "\u001b[0;32m--> 545\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n",
      "\u001b[1;32m    546\u001b[0m         _output_key\n",
      "\u001b[1;32m    547\u001b[0m     ]\n",
      "\u001b[1;32m    549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n",
      "\u001b[1;32m    550\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(kwargs, callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n",
      "\u001b[1;32m    551\u001b[0m         _output_key\n",
      "\u001b[1;32m    552\u001b[0m     ]\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
      "\u001b[1;32m    144\u001b[0m     emit_warning()\n",
      "\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n",
      "\u001b[1;32m    346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n",
      "\u001b[1;32m    347\u001b[0m \n",
      "\u001b[1;32m    348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n",
      "\u001b[0;32m   (...)\u001b[0m\n",
      "\u001b[1;32m    369\u001b[0m \u001b[38;5;124;03m        `Chain.output_keys`.\u001b[39;00m\n",
      "\u001b[1;32m    370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n",
      "\u001b[1;32m    371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n",
      "\u001b[1;32m    372\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n",
      "\u001b[1;32m    373\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n",
      "\u001b[1;32m    374\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n",
      "\u001b[1;32m    375\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n",
      "\u001b[1;32m    376\u001b[0m }\n",
      "\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m    379\u001b[0m \u001b[43m    \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    380\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    381\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    382\u001b[0m \u001b[43m    \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "\u001b[1;32m    162\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
      "\u001b[0;32m--> 163\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m e\n",
      "\u001b[1;32m    164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n",
      "\u001b[1;32m    166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
      "\u001b[1;32m    151\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n",
      "\u001b[1;32m    152\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m (\n",
      "\u001b[0;32m--> 153\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m    154\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n",
      "\u001b[1;32m    155\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n",
      "\u001b[1;32m    156\u001b[0m     )\n",
      "\u001b[1;32m    158\u001b[0m     final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n",
      "\u001b[1;32m    159\u001b[0m         inputs, outputs, return_only_outputs\n",
      "\u001b[1;32m    160\u001b[0m     )\n",
      "\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n",
      "\u001b[1;32m   1430\u001b[0m \u001b[38;5;66;03m# We now enter the agent loop (until it returns something).\u001b[39;00m\n",
      "\u001b[1;32m   1431\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_continue(iterations, time_elapsed):\n",
      "\u001b[0;32m-> 1432\u001b[0m     next_step_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_next_step\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m   1433\u001b[0m \u001b[43m        \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1434\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1435\u001b[0m \u001b[43m        \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1436\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1437\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1438\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m   1439\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(next_step_output, AgentFinish):\n",
      "\u001b[1;32m   1440\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_return(\n",
      "\u001b[1;32m   1441\u001b[0m             next_step_output, intermediate_steps, run_manager\u001b[38;5;241m=\u001b[39mrun_manager\n",
      "\u001b[1;32m   1442\u001b[0m         )\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n",
      "\u001b[1;32m   1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n",
      "\u001b[1;32m   1130\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n",
      "\u001b[1;32m   1131\u001b[0m     name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n",
      "\u001b[0;32m   (...)\u001b[0m\n",
      "\u001b[1;32m   1135\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
      "\u001b[1;32m   1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n",
      "\u001b[1;32m   1137\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n",
      "\u001b[0;32m-> 1138\u001b[0m         \u001b[43m[\u001b[49m\n",
      "\u001b[1;32m   1139\u001b[0m \u001b[43m            \u001b[49m\u001b[43ma\u001b[49m\n",
      "\u001b[1;32m   1140\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m   1141\u001b[0m \u001b[43m                \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1142\u001b[0m \u001b[43m                \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1143\u001b[0m \u001b[43m                \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1144\u001b[0m \u001b[43m                \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1145\u001b[0m \u001b[43m                \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1146\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m   1147\u001b[0m \u001b[43m        \u001b[49m\u001b[43m]\u001b[49m\n",
      "\u001b[1;32m   1148\u001b[0m     )\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n",
      "\u001b[1;32m   1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n",
      "\u001b[1;32m   1130\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n",
      "\u001b[1;32m   1131\u001b[0m     name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n",
      "\u001b[0;32m   (...)\u001b[0m\n",
      "\u001b[1;32m   1135\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
      "\u001b[1;32m   1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n",
      "\u001b[1;32m   1137\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n",
      "\u001b[0;32m-> 1138\u001b[0m         \u001b[43m[\u001b[49m\n",
      "\u001b[1;32m   1139\u001b[0m \u001b[43m            \u001b[49m\u001b[43ma\u001b[49m\n",
      "\u001b[1;32m   1140\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m   1141\u001b[0m \u001b[43m                \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1142\u001b[0m \u001b[43m                \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1143\u001b[0m \u001b[43m                \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1144\u001b[0m \u001b[43m                \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1145\u001b[0m \u001b[43m                \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1146\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m   1147\u001b[0m \u001b[43m        \u001b[49m\u001b[43m]\u001b[49m\n",
      "\u001b[1;32m   1148\u001b[0m     )\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1166\u001b[0m, in \u001b[0;36mAgentExecutor._iter_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n",
      "\u001b[1;32m   1163\u001b[0m     intermediate_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_intermediate_steps(intermediate_steps)\n",
      "\u001b[1;32m   1165\u001b[0m     \u001b[38;5;66;03m# Call the LLM to see what to do.\u001b[39;00m\n",
      "\u001b[0;32m-> 1166\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplan\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m   1167\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1168\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1169\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m   1170\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m   1171\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m OutputParserException \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "\u001b[1;32m   1172\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_parsing_errors, \u001b[38;5;28mbool\u001b[39m):\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:618\u001b[0m, in \u001b[0;36mLLMSingleActionAgent.plan\u001b[0;34m(self, intermediate_steps, callbacks, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    601\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplan\u001b[39m(\n",
      "\u001b[1;32m    602\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n",
      "\u001b[1;32m    603\u001b[0m     intermediate_steps: List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]],\n",
      "\u001b[1;32m    604\u001b[0m     callbacks: Callbacks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
      "\u001b[1;32m    605\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n",
      "\u001b[1;32m    606\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentAction, AgentFinish]:\n",
      "\u001b[1;32m    607\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Given input, decided what to do.\u001b[39;00m\n",
      "\u001b[1;32m    608\u001b[0m \n",
      "\u001b[1;32m    609\u001b[0m \u001b[38;5;124;03m    Args:\u001b[39;00m\n",
      "\u001b[0;32m   (...)\u001b[0m\n",
      "\u001b[1;32m    616\u001b[0m \u001b[38;5;124;03m        Action specifying what tool to use.\u001b[39;00m\n",
      "\u001b[1;32m    617\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n",
      "\u001b[0;32m--> 618\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m    619\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    620\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    621\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    622\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    623\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m    624\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_parser\u001b[38;5;241m.\u001b[39mparse(output)\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
      "\u001b[1;32m    144\u001b[0m     emit_warning()\n",
      "\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:550\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    545\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(args[\u001b[38;5;241m0\u001b[39m], callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n",
      "\u001b[1;32m    546\u001b[0m         _output_key\n",
      "\u001b[1;32m    547\u001b[0m     ]\n",
      "\u001b[1;32m    549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n",
      "\u001b[0;32m--> 550\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n",
      "\u001b[1;32m    551\u001b[0m         _output_key\n",
      "\u001b[1;32m    552\u001b[0m     ]\n",
      "\u001b[1;32m    554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n",
      "\u001b[1;32m    555\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n",
      "\u001b[1;32m    556\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supported with either positional arguments or keyword arguments,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
      "\u001b[1;32m    557\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but none were provided.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
      "\u001b[1;32m    558\u001b[0m     )\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
      "\u001b[1;32m    144\u001b[0m     emit_warning()\n",
      "\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n",
      "\u001b[1;32m    346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n",
      "\u001b[1;32m    347\u001b[0m \n",
      "\u001b[1;32m    348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n",
      "\u001b[0;32m   (...)\u001b[0m\n",
      "\u001b[1;32m    369\u001b[0m \u001b[38;5;124;03m        `Chain.output_keys`.\u001b[39;00m\n",
      "\u001b[1;32m    370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n",
      "\u001b[1;32m    371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n",
      "\u001b[1;32m    372\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n",
      "\u001b[1;32m    373\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n",
      "\u001b[1;32m    374\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n",
      "\u001b[1;32m    375\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n",
      "\u001b[1;32m    376\u001b[0m }\n",
      "\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n",
      "\u001b[1;32m    379\u001b[0m \u001b[43m    \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    380\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    381\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    382\u001b[0m \u001b[43m    \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n",
      "\u001b[1;32m    383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "\u001b[1;32m    162\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
      "\u001b[0;32m--> 163\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m e\n",
      "\u001b[1;32m    164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n",
      "\u001b[1;32m    166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
      "\u001b[1;32m    151\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n",
      "\u001b[1;32m    152\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m (\n",
      "\u001b[0;32m--> 153\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m    154\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n",
      "\u001b[1;32m    155\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n",
      "\u001b[1;32m    156\u001b[0m     )\n",
      "\u001b[1;32m    158\u001b[0m     final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n",
      "\u001b[1;32m    159\u001b[0m         inputs, outputs, return_only_outputs\n",
      "\u001b[1;32m    160\u001b[0m     )\n",
      "\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:103\u001b[0m, in \u001b[0;36mLLMChain._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n",
      "\u001b[1;32m     98\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call\u001b[39m(\n",
      "\u001b[1;32m     99\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n",
      "\u001b[1;32m    100\u001b[0m     inputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any],\n",
      "\u001b[1;32m    101\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
      "\u001b[1;32m    102\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dict[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mstr\u001b[39m]:\n",
      "\u001b[0;32m--> 103\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m    104\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_outputs(response)[\u001b[38;5;241m0\u001b[39m]\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:112\u001b[0m, in \u001b[0;36mLLMChain.generate\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n",
      "\u001b[1;32m    106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate\u001b[39m(\n",
      "\u001b[1;32m    107\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n",
      "\u001b[1;32m    108\u001b[0m     input_list: List[Dict[\u001b[38;5;28mstr\u001b[39m, Any]],\n",
      "\u001b[1;32m    109\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
      "\u001b[1;32m    110\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n",
      "\u001b[1;32m    111\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Generate LLM result from inputs.\"\"\"\u001b[39;00m\n",
      "\u001b[0;32m--> 112\u001b[0m     prompts, stop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprep_prompts\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m    113\u001b[0m     callbacks \u001b[38;5;241m=\u001b[39m run_manager\u001b[38;5;241m.\u001b[39mget_child() \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "\u001b[1;32m    114\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mllm, BaseLanguageModel):\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:174\u001b[0m, in \u001b[0;36mLLMChain.prep_prompts\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n",
      "\u001b[1;32m    172\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m inputs \u001b[38;5;129;01min\u001b[39;00m input_list:\n",
      "\u001b[1;32m    173\u001b[0m     selected_inputs \u001b[38;5;241m=\u001b[39m {k: inputs[k] \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprompt\u001b[38;5;241m.\u001b[39minput_variables}\n",
      "\u001b[0;32m--> 174\u001b[0m     prompt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat_prompt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mselected_inputs\u001b[49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;32m    175\u001b[0m     _colored_text \u001b[38;5;241m=\u001b[39m get_colored_text(prompt\u001b[38;5;241m.\u001b[39mto_string(), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgreen\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "\u001b[1;32m    176\u001b[0m     _text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPrompt after formatting:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m _colored_text\n",
      "\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/prompts/string.py:164\u001b[0m, in \u001b[0;36mStringPromptTemplate.format_prompt\u001b[0;34m(self, **kwargs)\u001b[0m\n",
      "\u001b[1;32m    162\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mformat_prompt\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m PromptValue:\n",
      "\u001b[1;32m    163\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Create Chat Messages.\"\"\"\u001b[39;00m\n",
      "\u001b[0;32m--> 164\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m StringPromptValue(text\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m)\n",
      "\n",
      "Cell \u001b[0;32mIn[88], line 50\u001b[0m, in \u001b[0;36mRavenPromptTemplate.format\u001b[0;34m(self, **kwargs)\u001b[0m\n",
      "\u001b[1;32m     48\u001b[0m     prompt \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mFunction:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<func_start>def \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc_signature\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m<func_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_start>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfunc_docstring\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n",
      "\u001b[1;32m     49\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraven_tools\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m prompt\n",
      "\u001b[0;32m---> 50\u001b[0m pp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtemplate_func\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{{\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}}\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "\u001b[1;32m     51\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pp\n",
      "\n",
      "\u001b[0;31mKeyError\u001b[0m: 'history'"
     ]
    }
   ],
   "source": [
    "call = agent_chain.run(\n",
    "    \"How is the weather in Tokyo?\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'The current weather conditions in Tokyo, Japan are partly cloudy with temperatures of 17°C and a wind speed of 17.4 mph.'"
      ]
     },
     "execution_count": 80,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "call"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.memory import ConversationBufferWindowMemory\n",
    "memory = ConversationBufferWindowMemory(k=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [],
   "source": [
    "agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "kwargs: {'input': 'How is the weather in Luxembourg?', 'intermediate_steps': []}\n"
     ]
    },
    {
     "ename": "KeyError",
     "evalue": "'history'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[96], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43magent_executor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mHow is the weather in Luxembourg?\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    144\u001b[0m     emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:545\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n\u001b[1;32m    543\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m    544\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supports only one positional argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 545\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m    546\u001b[0m         _output_key\n\u001b[1;32m    547\u001b[0m     ]\n\u001b[1;32m    549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m    550\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(kwargs, callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n\u001b[1;32m    551\u001b[0m         _output_key\n\u001b[1;32m    552\u001b[0m     ]\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    144\u001b[0m     emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m    346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n\u001b[1;32m    347\u001b[0m \n\u001b[1;32m    348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    369\u001b[0m \u001b[38;5;124;03m        `Chain.output_keys`.\u001b[39;00m\n\u001b[1;32m    370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m    372\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n\u001b[1;32m    373\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n\u001b[1;32m    374\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n\u001b[1;32m    375\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n\u001b[1;32m    376\u001b[0m }\n\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    379\u001b[0m \u001b[43m    \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    380\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    381\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    382\u001b[0m \u001b[43m    \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    162\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 163\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m    164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m    166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    151\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n\u001b[1;32m    152\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 153\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    154\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m    155\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m    156\u001b[0m     )\n\u001b[1;32m    158\u001b[0m     final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m    159\u001b[0m         inputs, outputs, return_only_outputs\n\u001b[1;32m    160\u001b[0m     )\n\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m   1430\u001b[0m \u001b[38;5;66;03m# We now enter the agent loop (until it returns something).\u001b[39;00m\n\u001b[1;32m   1431\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_continue(iterations, time_elapsed):\n\u001b[0;32m-> 1432\u001b[0m     next_step_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1433\u001b[0m \u001b[43m        \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1434\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1435\u001b[0m \u001b[43m        \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1436\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1437\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1438\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1439\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(next_step_output, AgentFinish):\n\u001b[1;32m   1440\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_return(\n\u001b[1;32m   1441\u001b[0m             next_step_output, intermediate_steps, run_manager\u001b[38;5;241m=\u001b[39mrun_manager\n\u001b[1;32m   1442\u001b[0m         )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m   1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m   1130\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   1131\u001b[0m     name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1135\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m   1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m   1137\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m         \u001b[43m[\u001b[49m\n\u001b[1;32m   1139\u001b[0m \u001b[43m            \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m   1140\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1141\u001b[0m \u001b[43m                \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1142\u001b[0m \u001b[43m                \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1143\u001b[0m \u001b[43m                \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1144\u001b[0m \u001b[43m                \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1145\u001b[0m \u001b[43m                \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1146\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1147\u001b[0m \u001b[43m        \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m   1148\u001b[0m     )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m   1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m   1130\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   1131\u001b[0m     name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1135\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m   1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m   1137\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m         \u001b[43m[\u001b[49m\n\u001b[1;32m   1139\u001b[0m \u001b[43m            \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m   1140\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1141\u001b[0m \u001b[43m                \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1142\u001b[0m \u001b[43m                \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1143\u001b[0m \u001b[43m                \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1144\u001b[0m \u001b[43m                \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1145\u001b[0m \u001b[43m                \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1146\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1147\u001b[0m \u001b[43m        \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m   1148\u001b[0m     )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1166\u001b[0m, in \u001b[0;36mAgentExecutor._iter_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m   1163\u001b[0m     intermediate_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_intermediate_steps(intermediate_steps)\n\u001b[1;32m   1165\u001b[0m     \u001b[38;5;66;03m# Call the LLM to see what to do.\u001b[39;00m\n\u001b[0;32m-> 1166\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplan\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1167\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1168\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m   1169\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1170\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1171\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m OutputParserException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m   1172\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_parsing_errors, \u001b[38;5;28mbool\u001b[39m):\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:618\u001b[0m, in \u001b[0;36mLLMSingleActionAgent.plan\u001b[0;34m(self, intermediate_steps, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m    601\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplan\u001b[39m(\n\u001b[1;32m    602\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    603\u001b[0m     intermediate_steps: List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]],\n\u001b[1;32m    604\u001b[0m     callbacks: Callbacks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m    605\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m    606\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentAction, AgentFinish]:\n\u001b[1;32m    607\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Given input, decided what to do.\u001b[39;00m\n\u001b[1;32m    608\u001b[0m \n\u001b[1;32m    609\u001b[0m \u001b[38;5;124;03m    Args:\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    616\u001b[0m \u001b[38;5;124;03m        Action specifying what tool to use.\u001b[39;00m\n\u001b[1;32m    617\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 618\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    619\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    620\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    621\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    622\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    623\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    624\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_parser\u001b[38;5;241m.\u001b[39mparse(output)\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    144\u001b[0m     emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:550\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n\u001b[1;32m    545\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(args[\u001b[38;5;241m0\u001b[39m], callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n\u001b[1;32m    546\u001b[0m         _output_key\n\u001b[1;32m    547\u001b[0m     ]\n\u001b[1;32m    549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[0;32m--> 550\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m    551\u001b[0m         _output_key\n\u001b[1;32m    552\u001b[0m     ]\n\u001b[1;32m    554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m    555\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m    556\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supported with either positional arguments or keyword arguments,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    557\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but none were provided.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    558\u001b[0m     )\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    143\u001b[0m     warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    144\u001b[0m     emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m    346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n\u001b[1;32m    347\u001b[0m \n\u001b[1;32m    348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    369\u001b[0m \u001b[38;5;124;03m        `Chain.output_keys`.\u001b[39;00m\n\u001b[1;32m    370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m    372\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n\u001b[1;32m    373\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n\u001b[1;32m    374\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n\u001b[1;32m    375\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n\u001b[1;32m    376\u001b[0m }\n\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    379\u001b[0m \u001b[43m    \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    380\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    381\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    382\u001b[0m \u001b[43m    \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    162\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 163\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m    164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m    166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    151\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n\u001b[1;32m    152\u001b[0m     outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 153\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    154\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m    155\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m    156\u001b[0m     )\n\u001b[1;32m    158\u001b[0m     final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m    159\u001b[0m         inputs, outputs, return_only_outputs\n\u001b[1;32m    160\u001b[0m     )\n\u001b[1;32m    161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:103\u001b[0m, in \u001b[0;36mLLMChain._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m     98\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call\u001b[39m(\n\u001b[1;32m     99\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    100\u001b[0m     inputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any],\n\u001b[1;32m    101\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m    102\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dict[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mstr\u001b[39m]:\n\u001b[0;32m--> 103\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    104\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_outputs(response)[\u001b[38;5;241m0\u001b[39m]\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:112\u001b[0m, in \u001b[0;36mLLMChain.generate\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n\u001b[1;32m    106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate\u001b[39m(\n\u001b[1;32m    107\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    108\u001b[0m     input_list: List[Dict[\u001b[38;5;28mstr\u001b[39m, Any]],\n\u001b[1;32m    109\u001b[0m     run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m    110\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n\u001b[1;32m    111\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Generate LLM result from inputs.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 112\u001b[0m     prompts, stop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprep_prompts\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    113\u001b[0m     callbacks \u001b[38;5;241m=\u001b[39m run_manager\u001b[38;5;241m.\u001b[39mget_child() \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m    114\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mllm, BaseLanguageModel):\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:174\u001b[0m, in \u001b[0;36mLLMChain.prep_prompts\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n\u001b[1;32m    172\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m inputs \u001b[38;5;129;01min\u001b[39;00m input_list:\n\u001b[1;32m    173\u001b[0m     selected_inputs \u001b[38;5;241m=\u001b[39m {k: inputs[k] \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprompt\u001b[38;5;241m.\u001b[39minput_variables}\n\u001b[0;32m--> 174\u001b[0m     prompt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat_prompt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mselected_inputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    175\u001b[0m     _colored_text \u001b[38;5;241m=\u001b[39m get_colored_text(prompt\u001b[38;5;241m.\u001b[39mto_string(), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgreen\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    176\u001b[0m     _text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPrompt after formatting:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m _colored_text\n",
      "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/prompts/string.py:164\u001b[0m, in \u001b[0;36mStringPromptTemplate.format_prompt\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m    162\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mformat_prompt\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m PromptValue:\n\u001b[1;32m    163\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Create Chat Messages.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 164\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m StringPromptValue(text\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m)\n",
      "Cell \u001b[0;32mIn[88], line 50\u001b[0m, in \u001b[0;36mRavenPromptTemplate.format\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m     48\u001b[0m     prompt \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mFunction:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<func_start>def \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc_signature\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m<func_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_start>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfunc_docstring\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m     49\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraven_tools\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m prompt\n\u001b[0;32m---> 50\u001b[0m pp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtemplate_func\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{{\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}}\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     51\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pp\n",
      "\u001b[0;31mKeyError\u001b[0m: 'history'"
     ]
    }
   ],
   "source": [
    "agent_executor.run(\"How is the weather in Luxembourg?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 87,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "kwargs: {'input': 'How about in Dubai?', 'intermediate_steps': []}\n",
      "llm_output:  \n",
      "Call: find_route(city_depart='Dubai', address_destination='', depart_time=) \n"
     ]
    },
    {
     "ename": "SyntaxError",
     "evalue": "invalid syntax (<string>, line 1)",
     "output_type": "error",
     "traceback": [
      "Traceback \u001b[0;36m(most recent call last)\u001b[0m:\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/IPython/core/interactiveshell.py:3577\u001b[0m in \u001b[1;35mrun_code\u001b[0m\n    exec(code_obj, self.user_global_ns, self.user_ns)\u001b[0m\n",
      "\u001b[0m  Cell \u001b[1;32mIn[87], line 1\u001b[0m\n    agent_executor.run(\"How about in Dubai?\")\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m in \u001b[1;35mwarning_emitting_wrapper\u001b[0m\n    return wrapped(*args, **kwargs)\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:545\u001b[0m in \u001b[1;35mrun\u001b[0m\n    return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m in \u001b[1;35mwarning_emitting_wrapper\u001b[0m\n    return wrapped(*args, **kwargs)\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m in \u001b[1;35m__call__\u001b[0m\n    return self.invoke(\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m in \u001b[1;35minvoke\u001b[0m\n    raise e\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m in \u001b[1;35minvoke\u001b[0m\n    self._call(inputs, run_manager=run_manager)\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m in \u001b[1;35m_call\u001b[0m\n    next_step_output = self._take_next_step(\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m in \u001b[1;35m_take_next_step\u001b[0m\n    [\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m in \u001b[1;35m<listcomp>\u001b[0m\n    [\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1166\u001b[0m in \u001b[1;35m_iter_next_step\u001b[0m\n    output = self.agent.plan(\u001b[0m\n",
      "\u001b[0m  File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:624\u001b[0m in \u001b[1;35mplan\u001b[0m\n    return self.output_parser.parse(output)\u001b[0m\n",
      "\u001b[0m  Cell \u001b[1;32mIn[51], line 21\u001b[0m in \u001b[1;35mparse\u001b[0m\n    func_name, args = extract_func_args(llm_output)\u001b[0m\n",
      "\u001b[0;36m  File \u001b[0;32m~/dev/uni/talking-car/skills/common.py:41\u001b[0;36m in \u001b[0;35mextract_func_args\u001b[0;36m\n\u001b[0;31m    arguments = eval(f\"dict{text.split(function_name)[1].strip()}\")\u001b[0;36m\n",
      "\u001b[0;36m  File \u001b[0;32m<string>:1\u001b[0;36m\u001b[0m\n\u001b[0;31m    dict(city_depart='Dubai', address_destination='', depart_time=)\u001b[0m\n\u001b[0m                                                                  ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
     ]
    }
   ],
   "source": [
    "agent_executor.run(\"How about in Dubai?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
    "\n",
    "demo_ephemeral_chat_history_for_chain = ChatMessageHistory()\n",
    "conversational_agent_executor = RunnableWithMessageHistory(\n",
    "    agent_executor,\n",
    "    lambda session_id: demo_ephemeral_chat_history_for_chain,\n",
    "    input_messages_key=\"input\",\n",
    "    output_messages_key=\"output\",\n",
    "    history_messages_key=\"chat_history\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "##############################\n",
    "# Step 3: Construct Prompt ###\n",
    "##############################\n",
    "\n",
    "\n",
    "def construct_prompt(user_query: str, context):\n",
    "    formatted_prompt = format_functions_for_prompt(get_weather, find_points_of_interest, find_route, get_forecast, search_along_route)\n",
    "    formatted_prompt += f'\\n\\nContext : {context}'\n",
    "    formatted_prompt += f\"\\n\\nUser Query: Question: {user_query}\\n\"\n",
    "\n",
    "    prompt = (\n",
    "        \"<human>:\\n\"\n",
    "        + formatted_prompt\n",
    "        + \"Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\"\n",
    "    )\n",
    "    return prompt\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "# convert bytes to megabytes\n",
    "def get_cuda_usage(): return round(torch.cuda.memory_allocated(\"cuda:0\")/1024/1024,2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# might be deleted\n",
    "# Compute a Simple equation\n",
    "print(f\"before everything: {get_cuda_usage()}\")\n",
    "prompt = construct_prompt(\"What restaurants are there on the road from Luxembourg Gare, which coordinates are lat 49.5999681, lon 6.1342493, to Thionville?\", \"\")\n",
    "print(f\"after creating prompt: {get_cuda_usage()}\")\n",
    "model_output = pipe(\n",
    "    prompt, do_sample=False, max_new_tokens=300, return_full_text=False\n",
    "    )\n",
    "print(model_output[0][\"generated_text\"])\n",
    "#execute_function_call(pipe(construct_prompt(\"Is it raining in Belval, ?\"), do_sample=False, max_new_tokens=300, return_full_text=False))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f\"creating the pipe of model output: {get_cuda_usage()}\")\n",
    "result = execute_function_call(model_output)\n",
    "print(f\"after execute function call: {get_cuda_usage()}\")\n",
    "del model_output\n",
    "import gc         # garbage collect library\n",
    "gc.collect()\n",
    "torch.cuda.empty_cache() \n",
    "print(f\"after garbage collect and empty_cache: {get_cuda_usage()}\")\n",
    "#print(\"Model Output:\", model_output)\n",
    "# print(\"Execution Result:\", result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## functions to process the anwser and the question"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#generation of text with Stable beluga \n",
    "def gen(p, maxlen=15, sample=True):\n",
    "    toks = tokr(p, return_tensors=\"pt\")\n",
    "    res = model.generate(**toks.to(\"cuda\"), max_new_tokens=maxlen, do_sample=sample).to('cpu')\n",
    "    return tokr.batch_decode(res)\n",
    "\n",
    "#to have a prompt corresponding to the specific format required by the fine-tuned model Stable Beluga\n",
    "def mk_prompt(user, syst=\"### System:\\nYou are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n\\n\"): return f\"{syst}### User: {user}\\n\\n### Assistant:\\n\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "yAJI0WyOLE8G"
   },
   "outputs": [],
   "source": [
    "def car_answer_only(complete_answer, general_context):\n",
    "    \"\"\"returns only the AI assistant answer, without all context, to reply to the user\"\"\"\n",
    "    pattern = r\"Assistant:\\\\n(.*)(</s>|[.!?](\\s|$))\" #pattern = r\"Assistant:\\\\n(.*?)</s>\"\n",
    "\n",
    "    match = re.search(pattern, complete_answer, re.DOTALL)\n",
    "\n",
    "    if match:\n",
    "        # Extracting the text\n",
    "        model_answer = match.group(1)\n",
    "        #print(complete_answer)\n",
    "    else:\n",
    "        #print(complete_answer)\n",
    "        model_answer = \"There has been an error with the generated response.\" \n",
    "\n",
    "    general_context +=  model_answer\n",
    "    return (model_answer, general_context)\n",
    "#print(model_answer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ViCEgogaENNV"
   },
   "outputs": [],
   "source": [
    "def FnAnswer(general_context, ques, place, time, delete_history, state):\n",
    "    \"\"\"function to manage the two different llms (function calling and basic answer) and call them one after the other\"\"\"\n",
    "    # Initialize state if it is None\n",
    "    if delete_history == \"Yes\":\n",
    "        state = None\n",
    "    if state is None:\n",
    "        conv_context = []\n",
    "        conv_context.append(general_context)\n",
    "        state = {}\n",
    "        state['context'] = conv_context\n",
    "        state['number'] = 0\n",
    "        state['last_question'] = \"\"\n",
    "        \n",
    "    if type(ques) != str: \n",
    "        ques = ques[0]\n",
    "        \n",
    "    place = definePlace(place) #which on the predefined places it is\n",
    "    \n",
    "    formatted_context = '\\n'.join(state['context'])\n",
    "        \n",
    "    #updated at every question\n",
    "    general_context = f\"\"\"\n",
    "    Recent conversation history: '{formatted_context}' (If empty, this indicates the beginning of the conversation).\n",
    "\n",
    "    Previous question from the user: '{state['last_question']}' (This may or may not be related to the current question).\n",
    "\n",
    "    User information: The user is inside a car in {place[0]}, with latitude {place[1]} and longitude {place[2]}. The user is mobile and can drive to different destinations. It is currently {time}\n",
    "\n",
    "    \"\"\"\n",
    "    #first llm call (function calling model, NexusRaven)\n",
    "    model_output= pipe(construct_prompt(ques, general_context), do_sample=False, max_new_tokens=300, return_full_text=False)\n",
    "    call = execute_function_call(model_output) #call variable is formatted to as a call to a specific function with the required parameters\n",
    "    print(call)\n",
    "    #this is what will erase the model_output from the GPU memory to free up space\n",
    "    del model_output\n",
    "    import gc         # garbage collect library\n",
    "    gc.collect()\n",
    "    torch.cuda.empty_cache() \n",
    "        \n",
    "    #updated at every question\n",
    "    general_context += f'This information might be of help, use if it seems relevant, and ignore if not relevant to reply to the user: \"{call}\". '\n",
    "    \n",
    "    #question formatted for the StableBeluga llm (second llm), using the output of the first llm as context in general_context\n",
    "    question=f\"\"\"Reply to the user and answer any question with the help of the provided context.\n",
    "\n",
    "    ## Context\n",
    "\n",
    "    {general_context} .\n",
    "\n",
    "    ## Question\n",
    "\n",
    "    {ques}\"\"\"\n",
    "\n",
    "    complete_answer = str(gen(mk_prompt(question), 100)) #answer generation with StableBeluga (2nd llm)\n",
    "\n",
    "    model_answer, general_context= car_answer_only(complete_answer, general_context) #to retrieve only the car answer \n",
    "    \n",
    "    language = pipe_language(model_answer, top_k=1, truncation=True)[0]['label'] #detect the language of the answer, to modify the text-to-speech consequently\n",
    "    \n",
    "    state['last_question'] = ques #add the current question as 'last question' for the next question's context\n",
    "    \n",
    "    state['number']= state['number'] + 1  #adds 1 to the number of interactions with the car\n",
    "\n",
    "    state['context'].append(str(state['number']) + '. User question: '+ ques + ', Model answer: ' + model_answer) #modifies the context\n",
    "    \n",
    "    #print(\"contexte : \" + '\\n'.join(state['context']))\n",
    "    \n",
    "    if len(state['context'])>5: #6 questions maximum in the context to avoid having too many information\n",
    "        state['context'] = state['context'][1:]\n",
    "\n",
    "    return model_answer, state['context'], state, language"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "9WQlYePVLrTN"
   },
   "outputs": [],
   "source": [
    "def transcript(general_context, link_to_audio, voice, place, time, delete_history, state):\n",
    "    \"\"\"this function manages speech-to-text to input Fnanswer function and text-to-speech with the Fnanswer output\"\"\"\n",
    "    # load audio from a specific path\n",
    "    audio_path = link_to_audio\n",
    "    audio_array, sampling_rate = librosa.load(link_to_audio, sr=16000)  # \"sr=16000\" ensures that the sampling rate is as required\n",
    "\n",
    "\n",
    "    # process the audio array\n",
    "    input_features = processor(audio_array, sampling_rate, return_tensors=\"pt\").input_features\n",
    "\n",
    "\n",
    "    predicted_ids = modelw.generate(input_features)\n",
    "\n",
    "    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)\n",
    "\n",
    "    quest_processing = FnAnswer(general_context, transcription, place, time, delete_history, state)\n",
    "    \n",
    "    state=quest_processing[2]\n",
    "    \n",
    "    print(\"langue \" + quest_processing[3])\n",
    "\n",
    "    tts.tts_to_file(text= str(quest_processing[0]),\n",
    "                file_path=\"output.wav\",\n",
    "                speaker_wav=f'Audio_Files/{voice}.wav',\n",
    "                language=quest_processing[3],\n",
    "                emotion = \"angry\")\n",
    "\n",
    "    audio_path = \"output.wav\"\n",
    "    return audio_path, state['context'], state"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def definePlace(place):\n",
    "    if(place == 'Luxembourg Gare, Luxembourg'):\n",
    "        return('Luxembourg Gare', '49.5999681', '6.1342493' )\n",
    "    elif (place =='Kirchberg Campus, Kirchberg'):\n",
    "        return('Kirchberg Campus, Luxembourg', '49.62571206478235', '6.160082636815114')\n",
    "    elif (place =='Belval Campus, Belval'):\n",
    "        return('Belval-Université, Esch-sur-Alzette', '49.499531', '5.9462903')\n",
    "    elif (place =='Eiffel Tower, Paris'):\n",
    "        return('Eiffel Tower, Paris', '48.8582599', '2.2945006')\n",
    "    elif (place=='Thionville, France'):\n",
    "        return('Thionville, France', '49.357927', '6.167587')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Interfaces (text and audio)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "#INTERFACE WITH ONLY TEXT\n",
    "\n",
    "# Generate options for hours (00-23) \n",
    "hour_options = [f\"{i:02d}:00:00\" for i in range(24)]\n",
    "\n",
    "model_answer= ''\n",
    "general_context= ''\n",
    "# Define the initial state with some initial context.\n",
    "print(general_context)\n",
    "initial_state = {'context': general_context}\n",
    "initial_context= initial_state['context']\n",
    "# Create the Gradio interface.\n",
    "iface = gr.Interface(\n",
    "    fn=FnAnswer,\n",
    "    inputs=[\n",
    "        gr.Textbox(value=initial_context, visible=False),\n",
    "        gr.Textbox(lines=2, placeholder=\"Type your message here...\"),\n",
    "        gr.Radio(choices=['Luxembourg Gare, Luxembourg', 'Kirchberg Campus, Kirchberg', 'Belval Campus, Belval', 'Eiffel Tower, Paris', 'Thionville, France'], label='Choose a location for your car', value= 'Kirchberg Campus, Kirchberg', show_label=True),\n",
    "        gr.Dropdown(choices=hour_options, label=\"What time is it?\", value = \"08:00:00\"),\n",
    "        gr.Radio([\"Yes\", \"No\"], label=\"Delete the conversation history?\", value = 'No'),\n",
    "        gr.State()  # This will keep track of the context state across interactions.\n",
    "    ],\n",
    "    outputs=[\n",
    "        gr.Textbox(),\n",
    "        gr.Textbox(visible=False),\n",
    "        gr.State()\n",
    "    ]\n",
    ")\n",
    "gr.close_all()\n",
    "# Launch the interface.\n",
    "iface.launch(debug=True, share=True, server_name=\"0.0.0.0\", server_port=7860)\n",
    "#contextual=gr.Textbox(value=general_context, visible=False)\n",
    "#demo = gr.Interface(fn=FnAnswer, inputs=[contextual,\"text\"], outputs=[\"text\", contextual])\n",
    "\n",
    "#demo.launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Other possible APIs to use"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def search_nearby(lat, lon, city, key):\n",
    "    \"\"\"\n",
    "    :param lat: latitude\n",
    "    :param lon: longitude\n",
    "    :param key: api key\n",
    "    :param type: type of poi\n",
    "    :return: [5] results ['poi']['name']/['freeformAddress'] || ['position']['lat']/['lon']\n",
    "    \"\"\"\n",
    "    results = []\n",
    "\n",
    "    r = requests.get('https://api.tomtom.com/search/2/nearbySearch/.json?key={0}&lat={1}&lon={2}&radius=10000&limit=50'.format(\n",
    "                        key,\n",
    "                        lat,\n",
    "                        lon\n",
    "    ))\n",
    "\n",
    "    for result in r.json()['results']:\n",
    "        results.append(f\"The {' '.join(result['poi']['categories'])} {result['poi']['name']} is {int(result['dist'])} meters far from {city}\")\n",
    "        if len(results) == 7:\n",
    "            break\n",
    "\n",
    "    return \". \".join(results)\n",
    "\n",
    "\n",
    "print(search_nearby('49.625892805337514', '6.160417066963513', 'your location', TOMTOM_KEY))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "accelerator": "GPU",
  "colab": {
   "gpuType": "T4",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}