File size: 171,673 Bytes
cb47347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### libraries import"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true,
"id": "oOnNfKjX4IAV"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n"
]
}
],
"source": [
"import os\n",
"\n",
"#gradio interface\n",
"import gradio as gr\n",
"\n",
"from transformers import AutoModelForCausalLM,AutoTokenizer\n",
"import torch\n",
"\n",
"#STT (speech to text)\n",
"from transformers import WhisperProcessor, WhisperForConditionalGeneration\n",
"import librosa\n",
"\n",
"#TTS (text to speech)\n",
"import torch\n",
"\n",
"#regular expressions\n",
"import re\n",
"\n",
"#langchain and function calling\n",
"from typing import List, Literal, Union\n",
"import requests\n",
"from functools import partial\n",
"import math\n",
"\n",
"\n",
"#langchain, not used anymore since I had to find another way fast to stop using the endpoint, but could be interesting to reuse \n",
"from langchain.tools.base import StructuredTool\n",
"from langchain.schema import AgentAction, AgentFinish, OutputParserException\n",
"from langchain.prompts import StringPromptTemplate\n",
"\n",
"\n",
"\n",
"from datetime import datetime, timedelta, timezone\n",
"from transformers import pipeline\n",
"import inspect"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import ConversationSummaryBufferMemory"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# load api key from .env file\n",
"# weather api and tomtom api key\n",
"from dotenv import load_dotenv\n",
"load_dotenv()\n",
"WHEATHER_API_KEY = os.getenv(\"WEATHER_API_KEY\")\n",
"TOMTOM_KEY = os.getenv(\"TOMTOM_API_KEY\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from apis import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Models loads"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\""
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import Ollama\n",
"# https://github.com/ollama/ollama/blob/main/docs/api.md\n",
"\n",
"llm = Ollama(model=\"nexusraven\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from skills import execute_function_call"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"get_weather(**{'location': '49.611622,6.131935'})\n"
]
},
{
"data": {
"text/plain": [
"'Dry run successful'"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"execute_function_call(\"Call: get_weather(location='49.611622,6.131935') \", dry_run=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Function calling with NexusRaven "
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"import skills\n",
"from skills import get_weather, get_forecast, find_route"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OPTION:\n",
"<func_start>get_weather(location: str = '', **kwargs)<func_end>\n",
"<docstring_start>\n",
"Returns the CURRENT weather in a specified location.\n",
"Args:\n",
"location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\n",
"<docstring_start>\n",
"Returns the weather forecast in a specified number of days for a specified city .\n",
"Args:\n",
"city_name (string) : Required. The name of the city.\n",
"when (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
"<docstring_start>\n",
"Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
":param lat_depart (string): latitude of depart\n",
":param lon_depart (string): longitude of depart\n",
":param city_depart (string): Required. city of depart\n",
":param address_destination (string): Required. The destination\n",
":param depart_time (string): departure hour, in the format '08:00:20'.\n",
"<docstring_end>\n"
]
}
],
"source": [
"print(skills.SKILLS_PROMPT)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# Moved to skills/__init__.py here only for experimentation\n",
"def format_functions_for_prompt_raven(*functions):\n",
" formatted_functions = []\n",
" for func in functions:\n",
" signature = f\"{func.__name__}{inspect.signature(func)}\"\n",
" docstring = inspect.getdoc(func)\n",
" formatted_functions.append(\n",
" f\"OPTION:\\n<func_start>{signature}<func_end>\\n<docstring_start>\\n{docstring}\\n<docstring_end>\"\n",
" )\n",
" return \"\\n\".join(formatted_functions)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"formatted_prompt = format_functions_for_prompt_raven(get_weather, find_points_of_interest, find_route, get_forecast, search_along_route)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OPTION:\n",
"<func_start>get_weather(location: str = '', **kwargs)<func_end>\n",
"<docstring_start>\n",
"Returns the CURRENT weather in a specified location.\n",
"Args:\n",
"location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>find_points_of_interest(lat='0', lon='0', city='', type_of_poi='restaurant', **kwargs)<func_end>\n",
"<docstring_start>\n",
"Return some of the closest points of interest for a specific location and type of point of interest. The more parameters there are, the more precise.\n",
":param lat (string): latitude\n",
":param lon (string): longitude\n",
":param city (string): Required. city\n",
":param type_of_poi (string): Required. type of point of interest depending on what the user wants to do.\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
"<docstring_start>\n",
"Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
":param lat_depart (string): latitude of depart\n",
":param lon_depart (string): longitude of depart\n",
":param city_depart (string): Required. city of depart\n",
":param address_destination (string): Required. The destination\n",
":param depart_time (string): departure hour, in the format '08:00:20'.\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\n",
"<docstring_start>\n",
"Returns the weather forecast in a specified number of days for a specified city .\n",
"Args:\n",
"city_name (string) : Required. The name of the city.\n",
"when (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>search_along_route(latitude_depart, longitude_depart, city_destination, type_of_poi)<func_end>\n",
"<docstring_start>\n",
"Return some of the closest points of interest along the route from the depart point, specified by its coordinates and a city destination.\n",
":param latitude_depart (string): Required. Latitude of depart location\n",
":param longitude_depart (string): Required. Longitude of depart location\n",
":param city_destination (string): Required. City destination\n",
":param type_of_poi (string): Required. type of point of interest depending on what the user wants to do.\n",
"<docstring_end>\n"
]
}
],
"source": [
"print(formatted_prompt)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate, PipelinePromptTemplate\n",
"from langchain.memory import ChatMessageHistory\n",
"from langchain_core.messages import AIMessage, HumanMessage, SystemMessage"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate.from_template(\"What is the weather in {location}?\")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"status_template = \"\"\"\n",
"car coordinates: lat:{lat}, lon:{lon}\n",
"current weather: {weather}\n",
"current temperature: {temperature}\n",
"current time: {time}\n",
"current date: {date}\n",
"destination: {destination}\n",
"\"\"\"\n",
"status_prompt = PromptTemplate.from_template(status_template)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PromptTemplate(input_variables=['date', 'destination', 'lat', 'lon', 'temperature', 'time', 'weather'], template='\\ncar coordinates: lat:{lat}, lon:{lon}\\ncurrent weather: {weather}\\ncurrent temperature: {temperature}\\ncurrent time: {time}\\ncurrent date: {date}\\ndestination: {destination}\\n')"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"status_prompt"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"prompt = SystemMessage(content=\"You are a nice pirate\")"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"full_template = \"\"\"\n",
"<human>\n",
"\n",
"{skills}\n",
"\n",
"Current status of the vehicle:\n",
"{status}\n",
"\n",
"User Query: Question: {question}\n",
"\n",
"\n",
"Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\n",
"\"\"\"\n",
"full_prompt = PromptTemplate.from_template(full_template)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"question_prompt = HumanMessage(content=\"How is the weather in Paris?\")\n",
"input_prompts = [\n",
" # (\"skills\", skills.SKILLS_PROMPT),\n",
" (\"status\", status_prompt),\n",
" # (\"question\", question_prompt),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"pipeline_prompt = PipelinePromptTemplate(\n",
" final_prompt=full_prompt, \n",
" pipeline_prompts=input_prompts\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"PipelinePromptTemplate(input_variables=['date', 'time', 'weather', 'lon', 'lat', 'destination', 'temperature'], final_prompt=PromptTemplate(input_variables=['question', 'skills', 'status'], template='\\n<human>\\n\\n{skills}\\n\\nCurrent status of the vehicle:\\n{status}\\n\\nUser Query: Question: {question}\\n\\n\\nPlease pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\\n'), pipeline_prompts=[('status', PromptTemplate(input_variables=['date', 'destination', 'lat', 'lon', 'temperature', 'time', 'weather'], template='\\ncar coordinates: lat:{lat}, lon:{lon}\\ncurrent weather: {weather}\\ncurrent temperature: {temperature}\\ncurrent time: {time}\\ncurrent date: {date}\\ndestination: {destination}\\n'))])"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipeline_prompt"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"history = ChatMessageHistory()\n",
"history.add_message(question_prompt)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatMessageHistory(messages=[HumanMessage(content='How is the weather in Paris?')])"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"history"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"history.add_ai_message(pipeline_prompt.format(\n",
" date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
" time=datetime.now().strftime(\"%H:%M:%S\"),\n",
" weather=\"sunny\",\n",
" temperature=\"20°C\",\n",
" destination=\"Paris\",\n",
" lat=\"48.8566\",\n",
" lon=\"2.3522\",\n",
" question=\"How is the weather in Paris?\",\n",
" # status=status,\n",
" skills=skills.SKILLS_PROMPT,\n",
" # system=system,\n",
" # query=question,\n",
" ))"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content=\"\\n<human>\\n\\nOPTION:\\n<func_start>get_weather(location: str = '', **kwargs)<func_end>\\n<docstring_start>\\nReturns the CURRENT weather in a specified location.\\nArgs:\\nlocation (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\\n<docstring_end>\\nOPTION:\\n<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\\n<docstring_start>\\nReturns the weather forecast in a specified number of days for a specified city .\\nArgs:\\ncity_name (string) : Required. The name of the city.\\nwhen (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\\n<docstring_end>\\nOPTION:\\n<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\\n<docstring_start>\\nReturn the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\\n:param lat_depart (string): latitude of depart\\n:param lon_depart (string): longitude of depart\\n:param city_depart (string): Required. city of depart\\n:param address_destination (string): Required. The destination\\n:param depart_time (string): departure hour, in the format '08:00:20'.\\n<docstring_end>\\n\\nCurrent status of the vehicle:\\n\\ncar coordinates: lat:48.8566, lon:2.3522\\ncurrent weather: sunny\\ncurrent temperature: 20°C\\ncurrent time: 17:04:03\\ncurrent date: 2024-04-30\\ndestination: Paris\\n\\n\\nUser Query: Question: How is the weather in Paris?\\n\\n\\nPlease pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\\n\")"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"history.messages[-1]"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"<human>\n",
"\n",
"OPTION:\n",
"<func_start>get_weather(location: str = '', **kwargs)<func_end>\n",
"<docstring_start>\n",
"Returns the CURRENT weather in a specified location.\n",
"Args:\n",
"location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>get_forecast(city_name: str = '', when=0, **kwargs)<func_end>\n",
"<docstring_start>\n",
"Returns the weather forecast in a specified number of days for a specified city .\n",
"Args:\n",
"city_name (string) : Required. The name of the city.\n",
"when (int) : Required. in number of days (until the day for which we want to know the forecast) (example: tomorrow is 1, in two days is 2, etc.)\n",
"<docstring_end>\n",
"OPTION:\n",
"<func_start>find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
"<docstring_start>\n",
"Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
":param lat_depart (string): latitude of depart\n",
":param lon_depart (string): longitude of depart\n",
":param city_depart (string): Required. city of depart\n",
":param address_destination (string): Required. The destination\n",
":param depart_time (string): departure hour, in the format '08:00:20'.\n",
"<docstring_end>\n",
"\n",
"Current status of the vehicle:\n",
"\n",
"car coordinates: lat:48.8566, lon:2.3522\n",
"current weather: sunny\n",
"current temperature: 20°C\n",
"current time: 17:04:04\n",
"current date: 2024-04-30\n",
"destination: Paris\n",
"\n",
"\n",
"User Query: Question: How is the weather in Paris?\n",
"\n",
"\n",
"Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\n",
"\n"
]
}
],
"source": [
"print(\n",
" pipeline_prompt.format(\n",
" date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
" time=datetime.now().strftime(\"%H:%M:%S\"),\n",
" weather=\"sunny\",\n",
" temperature=\"20°C\",\n",
" destination=\"Paris\",\n",
" lat=\"48.8566\",\n",
" lon=\"2.3522\",\n",
" question=\"How is the weather in Paris?\",\n",
" # status=status,\n",
" skills=skills.SKILLS_PROMPT,\n",
" # system=system,\n",
" # query=question,\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import Ollama\n",
"\n",
"llm = Ollama(model=\"nexusraven\", stop=[\"\\nReflection:\", \"\\nThought:\"])"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"chain = pipeline_prompt | llm"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"q = dict(\n",
" date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
" time=datetime.now().strftime(\"%H:%M:%S\"),\n",
" weather=\"sunny\",\n",
" temperature=\"20°C\",\n",
" destination=\"Paris\",\n",
" lat=\"48.8566\",\n",
" lon=\"2.3522\",\n",
" question=\"How is the weather in Paris?\",\n",
" # status=status,\n",
" skills=skills.SKILLS_PROMPT,\n",
" # system=system,\n",
" # query=question,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"out_1 = chain.invoke(q)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"http://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Paris&aqi=no\n",
"http://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Paris&aqi=no\n"
]
}
],
"source": [
"func_out_1 = execute_function_call(out_1)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The current weather in Paris, Ile-de-France, France is Light rain with a temperature of 17.0°C that feels like 17.0°C. Humidity is at 68%. Wind speed is 12.5 mph.'"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"func_out_1"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.runnables.history import RunnableWithMessageHistory\n",
"from langchain.agents import create_self_ask_with_search_agent"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Test Langchain Agent"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import langchain\n",
"langchain.debug=False\n",
"from skills import get_weather, find_route, get_forecast"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from typing import Union, List\n",
"\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import StringPromptTemplate\n",
"from langchain.tools.base import StructuredTool\n",
"from langchain.schema import AgentAction, AgentFinish, OutputParserException\n",
"from skills import extract_func_args\n",
"from langchain.agents import (\n",
" Tool,\n",
" AgentExecutor,\n",
" LLMSingleActionAgent,\n",
" AgentOutputParser,\n",
")\n",
"\n",
"# https://github.com/nexusflowai/NexusRaven/blob/main/scripts/langchain_example.py\n",
"class RavenOutputParser(AgentOutputParser):\n",
" def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
" print(f\"llm_output: {llm_output}\")\n",
" if \"Call: \" in llm_output:\n",
" # llm_output = llm_output.replace(\"Initial Answer: \", \"Call: \")\n",
" func_name, args = extract_func_args(llm_output)\n",
" return AgentAction(\n",
" tool=func_name,\n",
" tool_input=args,\n",
" log=f\"Calling {func_name} with args: {args}\",\n",
" )\n",
"\n",
" # Check if agent should finish\n",
" # if \"Initial Answer:\" in llm_output:\n",
" # return AgentFinish(\n",
" # return_values={\n",
" # \"output\": llm_output.strip()\n",
" # .split(\"\\n\")[1]\n",
" # .replace(\"Initial Answer: \", \"\")\n",
" # .strip()\n",
" # },\n",
" # log=llm_output,\n",
" # )\n",
" \n",
" return AgentFinish(\n",
" return_values={\n",
" \"output\": llm_output.strip()\n",
" },\n",
" log=llm_output,\n",
" )\n",
" # else:\n",
" # raise OutputParserException(f\"Could not parse LLM output: `{llm_output}`\")\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"tools = [\n",
" StructuredTool.from_function(get_weather),\n",
" StructuredTool.from_function(find_route),\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import json"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"RAVEN_PROMPT_FUNC = \"\"\"You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\n",
"{raven_tools}\n",
"\n",
"Current status of the vehicle:\n",
"{status}\n",
"\n",
"Previous conversation history:\n",
"{history}\n",
"\n",
"User Query: Question: {input}\n",
"\n",
"If it helps to answer the question please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\"\"\"\n",
"\n",
"RAVEN_PROMPT_ANS = \"\"\"\n",
"<human>\n",
"You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\n",
"\n",
"Current status of the vehicle:\n",
"{status}\n",
"\n",
"Previous conversation history:\n",
"{history}\n",
"\n",
"User Query: Question: {input}\n",
"\n",
"Observation:{observation}\n",
"\n",
"Please respond in natural language. Do not refer to the provided context in your response.<human_end>\n",
"\n",
"Answer: \"\"\"\n",
"\n",
"\n",
"STATUS_TEMPLATE = \"\"\"\n",
"car coordinates: lat:{lat}, lon:{lon}\n",
"current time: {time}\n",
"current date: {date}\n",
"destination: {destination}\n",
"\"\"\"\n",
"status_prompt = PromptTemplate.from_template(STATUS_TEMPLATE)\n",
"\n",
"class RavenPromptTemplate(StringPromptTemplate):\n",
" template_func: str\n",
" template_ans: str\n",
" status_prompt: PromptTemplate\n",
" # The list of tools available\n",
" tools: List[Tool]\n",
"\n",
" def format(self, **kwargs) -> str:\n",
" print(f\"kwargs: {kwargs}\")\n",
" intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
" # if \"input\" in kwargs and type(kwargs[\"input\"]) == dict:\n",
" # inputs = kwargs[\"input\"]\n",
" # kwargs[\"status\"] = inputs[\"status\"]\n",
" # kwargs[\"input\"] = inputs[\"input\"]\n",
"\n",
" if intermediate_steps:\n",
" step = intermediate_steps[-1]\n",
" prompt = json.dumps(step[1][1], indent=4)\n",
" kwargs[\"observation\"] = prompt\n",
" pp = self.template_ans.format(**kwargs).replace(\"{{\", \"{\").replace(\"}}\", \"}\")\n",
" return pp\n",
"\n",
" if \"status\" in kwargs:\n",
" kwargs[\"status\"] = self.status_prompt.format(**kwargs[\"status\"])\n",
"\n",
" prompt = \"<human>:\\n\"\n",
" for tool in self.tools:\n",
" func_signature, func_docstring = tool.description.split(\" - \", 1)\n",
" prompt += f'\\Function:\\n<func_start>def {func_signature}<func_end>\\n<docstring_start>\\n\"\"\"\\n{func_docstring}\\n\"\"\"\\n<docstring_end>\\n'\n",
" kwargs[\"raven_tools\"] = prompt\n",
" pp = self.template_func.format(**kwargs).replace(\"{{\", \"{\").replace(\"}}\", \"}\")\n",
" return pp\n",
"\n",
"\n",
"raven_prompt = RavenPromptTemplate(\n",
" template_func=RAVEN_PROMPT_FUNC,\n",
" template_ans=RAVEN_PROMPT_ANS,\n",
" status_prompt=status_prompt,\n",
" tools=tools,\n",
" input_variables=[\"input\", \"status\", \"history\", \"intermediate_steps\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import ConversationBufferWindowMemory\n",
"memory = ConversationBufferWindowMemory(k=2, input_key=\"input\")"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import Ollama\n",
"\n",
"# llm = Ollama(model=\"new-nexus\")\n",
"llm = Ollama(model=\"nexusraven\")\n",
"output_parser = RavenOutputParser()\n",
"llm_chain = LLMChain(llm=llm, prompt=raven_prompt)\n",
"agent = LLMSingleActionAgent(\n",
" llm_chain=llm_chain,\n",
" output_parser=output_parser,\n",
" stop=[\"\\nReflection:\", \"\\nThought:\"],\n",
" # stop=[\"\\nReflection:\"],\n",
" allowed_tools=tools,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, memory=memory, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AgentExecutor(memory=ConversationBufferWindowMemory(input_key='input', k=2), verbose=True, agent=LLMSingleActionAgent(llm_chain=LLMChain(prompt=RavenPromptTemplate(input_variables=['input', 'status', 'history', 'intermediate_steps'], template_func='You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n{raven_tools}\\n\\nCurrent status of the vehicle:\\n{status}\\n\\nPrevious conversation history:\\n{history}\\n\\nUser Query: Question: {input}\\n\\nIf it helps to answer the question please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>', template_ans='\\n<human>\\nYou are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n\\nCurrent status of the vehicle:\\n{status}\\n\\nPrevious conversation history:\\n{history}\\n\\nUser Query: Question: {input}\\n\\nObservation:{observation}\\n\\nPlease respond in natural language. Do not refer to the provided context in your response.<human_end>\\n\\nAnswer: ', status_prompt=PromptTemplate(input_variables=['date', 'destination', 'lat', 'lon', 'time'], template='\\ncar coordinates: lat:{lat}, lon:{lon}\\ncurrent time: {time}\\ncurrent date: {date}\\ndestination: {destination}\\n'), tools=[Tool(name='get_weather', description=\"get_weather(location: str = '', **kwargs) - Returns the CURRENT weather in a specified location.\\n Args:\\n location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\", args_schema=<class 'pydantic.v1.main.get_weatherSchema'>, func=<function get_weather at 0x114073a60>), Tool(name='find_route', description=\"find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs) - Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\\n :param lat_depart (string): latitude of depart\\n :param lon_depart (string): longitude of depart\\n :param city_depart (string): Required. city of depart\\n :param address_destination (string): Required. The destination\\n :param depart_time (string): departure hour, in the format '08:00:20'.\", args_schema=<class 'pydantic.v1.main.find_routeSchema'>, func=<function find_route at 0x114073920>)]), llm=Ollama(model='nexusraven')), output_parser=RavenOutputParser(), stop=['\\nReflection:', '\\nThought:']), tools=[StructuredTool(name='get_weather', description=\"get_weather(location: str = '', **kwargs) - Returns the CURRENT weather in a specified location.\\n Args:\\n location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\", args_schema=<class 'pydantic.v1.main.get_weatherSchema'>, func=<function get_weather at 0x114073a60>), StructuredTool(name='find_route', description=\"find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs) - Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\\n :param lat_depart (string): latitude of depart\\n :param lon_depart (string): longitude of depart\\n :param city_depart (string): Required. city of depart\\n :param address_destination (string): Required. The destination\\n :param depart_time (string): departure hour, in the format '08:00:20'.\", args_schema=<class 'pydantic.v1.main.find_routeSchema'>, func=<function find_route at 0x114073920>)])"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"agent_chain"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"\n",
"status = dict(\n",
" date=datetime.now().strftime(\"%Y-%m-%d\"),\n",
" time=datetime.now().strftime(\"%H:%M:%S\"),\n",
" # temperature=\"20°C\",\n",
" destination=\"Kirchberg, Luxembourg\",\n",
" lat=\"48.8566\",\n",
" lon=\"2.3522\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"kwargs: {'input': 'How is the weather in Luxembourg?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': '', 'intermediate_steps': []}\n",
"llm_output: \n",
"Call: get_weather(location='Luxembourg') \n",
"\u001b[32;1m\u001b[1;3mCalling get_weather with args: {'location': 'Luxembourg'}\u001b[0mhttp://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Luxembourg&aqi=no\n",
"\n",
"\n",
"Reflection:\u001b[36;1m\u001b[1;3m('The current weather in Luxembourg, Luxembourg, Luxembourg is Moderate or heavy rain with thunder with a temperature of 15.0°C that feels like 13.7°C. Humidity is at 82%. Wind speed is 28.1 kph.', {'location': {'name': 'Luxembourg', 'region': 'Luxembourg', 'country': 'Luxembourg', 'lat': 49.61, 'lon': 6.13, 'tz_id': 'Europe/Luxembourg', 'localtime_epoch': 1714656936, 'localtime': '2024-05-02 15:35'}, 'current': {'last_updated': '2024-05-02 15:30', 'temp_c': 15.0, 'condition': {'text': 'Moderate or heavy rain with thunder'}, 'wind_kph': 28.1, 'wind_dir': 'WSW', 'precip_mm': 1.01, 'precip_in': 0.04, 'humidity': 82, 'cloud': 75, 'feelslike_c': 13.7}})\u001b[0m\n",
"kwargs: {'input': 'How is the weather in Luxembourg?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': '', 'intermediate_steps': [(AgentAction(tool='get_weather', tool_input={'location': 'Luxembourg'}, log=\"Calling get_weather with args: {'location': 'Luxembourg'}\"), ('The current weather in Luxembourg, Luxembourg, Luxembourg is Moderate or heavy rain with thunder with a temperature of 15.0°C that feels like 13.7°C. Humidity is at 82%. Wind speed is 28.1 kph.', {'location': {'name': 'Luxembourg', 'region': 'Luxembourg', 'country': 'Luxembourg', 'lat': 49.61, 'lon': 6.13, 'tz_id': 'Europe/Luxembourg', 'localtime_epoch': 1714656936, 'localtime': '2024-05-02 15:35'}, 'current': {'last_updated': '2024-05-02 15:30', 'temp_c': 15.0, 'condition': {'text': 'Moderate or heavy rain with thunder'}, 'wind_kph': 28.1, 'wind_dir': 'WSW', 'precip_mm': 1.01, 'precip_in': 0.04, 'humidity': 82, 'cloud': 75, 'feelslike_c': 13.7}}))]}\n",
"llm_output: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\n",
"\u001b[32;1m\u001b[1;3mThe weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"call = agent_chain.run(\n",
" input=\"How is the weather in Luxembourg?\",\n",
" status= status\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The current weather conditions in Tokyo are partly cloudy, with a temperature of 17 degrees Celsius and a wind speed of 17.4 miles per hour.'"
]
},
"execution_count": 93,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"call"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"kwargs: {'input': 'How about in Tokyo?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': 'Human: How is the weather in Luxembourg?\\nAI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.', 'intermediate_steps': []}\n",
"You are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\n",
"<human>:\n",
"\\Function:\n",
"<func_start>def get_weather(location: str = '', **kwargs)<func_end>\n",
"<docstring_start>\n",
"\"\"\"\n",
"Returns the CURRENT weather in a specified location.\n",
" Args:\n",
" location (string) : Required. The name of the location, could be a city or lat/longitude in the following format latitude,longitude (example: 37.7749,-122.4194).\n",
"\"\"\"\n",
"<docstring_end>\n",
"\\Function:\n",
"<func_start>def find_route(lat_depart='0', lon_depart='0', city_depart='', address_destination='', depart_time='', **kwargs)<func_end>\n",
"<docstring_start>\n",
"\"\"\"\n",
"Return the distance and the estimated time to go to a specific destination from the current place, at a specified depart time.\n",
" :param lat_depart (string): latitude of depart\n",
" :param lon_depart (string): longitude of depart\n",
" :param city_depart (string): Required. city of depart\n",
" :param address_destination (string): Required. The destination\n",
" :param depart_time (string): departure hour, in the format '08:00:20'.\n",
"\"\"\"\n",
"<docstring_end>\n",
"\n",
"\n",
"Current status of the vehicle:\n",
"{'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}\n",
"\n",
"Previous conversation history:\n",
"Human: How is the weather in Luxembourg?\n",
"AI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\n",
"\n",
"User Query: Question: How about in Tokyo?\n",
"\n",
"If it helps to answer the question please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\n",
"llm_output: Call: get_weather(location='Tokyo') \n",
"\u001b[32;1m\u001b[1;3mCalling get_weather with args: {'location': 'Tokyo'}\u001b[0mhttp://api.weatherapi.com/v1/current.json?key=d1c4d0d8ef6847339a0125737240903&q=Tokyo&aqi=no\n",
"\n",
"\n",
"Reflection:\u001b[36;1m\u001b[1;3m('The current weather in Tokyo, Tokyo, Japan is Clear with a temperature of 14.2°C that feels like 13.5°C. Humidity is at 69%. Wind speed is 6.1 kph.', {'location': {'name': 'Tokyo', 'region': 'Tokyo', 'country': 'Japan', 'lat': 35.69, 'lon': 139.69, 'tz_id': 'Asia/Tokyo', 'localtime_epoch': 1714657466, 'localtime': '2024-05-02 22:44'}, 'current': {'last_updated': '2024-05-02 22:30', 'temp_c': 14.2, 'condition': {'text': 'Clear'}, 'wind_kph': 6.1, 'wind_dir': 'W', 'precip_mm': 0.0, 'precip_in': 0.0, 'humidity': 69, 'cloud': 0, 'feelslike_c': 13.5}})\u001b[0m\n",
"kwargs: {'input': 'How about in Tokyo?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': 'Human: How is the weather in Luxembourg?\\nAI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.', 'intermediate_steps': [(AgentAction(tool='get_weather', tool_input={'location': 'Tokyo'}, log=\"Calling get_weather with args: {'location': 'Tokyo'}\"), ('The current weather in Tokyo, Tokyo, Japan is Clear with a temperature of 14.2°C that feels like 13.5°C. Humidity is at 69%. Wind speed is 6.1 kph.', {'location': {'name': 'Tokyo', 'region': 'Tokyo', 'country': 'Japan', 'lat': 35.69, 'lon': 139.69, 'tz_id': 'Asia/Tokyo', 'localtime_epoch': 1714657466, 'localtime': '2024-05-02 22:44'}, 'current': {'last_updated': '2024-05-02 22:30', 'temp_c': 14.2, 'condition': {'text': 'Clear'}, 'wind_kph': 6.1, 'wind_dir': 'W', 'precip_mm': 0.0, 'precip_in': 0.0, 'humidity': 69, 'cloud': 0, 'feelslike_c': 13.5}}))]}\n",
"llm_output: The weather in Tokyo is currently clear with a temperature of 14.2 degrees Celsius and a wind speed of 6.1 kilometers per hour. There is a 0% chance of precipitation, and the humidity is at 69%. It feels like 13.5 degrees Celsius outside.\n",
"\u001b[32;1m\u001b[1;3mThe weather in Tokyo is currently clear with a temperature of 14.2 degrees Celsius and a wind speed of 6.1 kilometers per hour. There is a 0% chance of precipitation, and the humidity is at 69%. It feels like 13.5 degrees Celsius outside.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"call = agent_chain.run(\n",
" input=\"How about in Tokyo?\",\n",
" status= status\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"kwargs: {'input': 'Where are we going?', 'status': {'date': '2024-05-02', 'time': '15:35:33', 'destination': 'Kirchberg, Luxembourg', 'lat': '48.8566', 'lon': '2.3522'}, 'history': 'Human: How is the weather in Luxembourg?\\nAI: The weather in Luxembourg is moderate or heavy rain with thunder, with a temperature of 15 degrees Celsius. The wind is blowing from the west at a speed of 28.1 kilometers per hour, and there is a 75% chance of cloud cover. It feels like 13.7 degrees Celsius outside.\\nHuman: How about in Tokyo?\\nAI: The weather in Tokyo is currently clear with a temperature of 14.2 degrees Celsius and a wind speed of 6.1 kilometers per hour. There is a 0% chance of precipitation, and the humidity is at 69%. It feels like 13.5 degrees Celsius outside.', 'intermediate_steps': []}\n",
"llm_output: \n",
"Call: find_route(city_depart='Luxembourg', address_destination=['Kirchberg, Luxembourg']) \n",
"\u001b[32;1m\u001b[1;3mCalling find_route with args: {'city_depart': 'Luxembourg', 'address_destination': ['Kirchberg, Luxembourg']}\u001b[0m['Kirchberg, Luxembourg']\n"
]
},
{
"ename": "NameError",
"evalue": "name 'check_city_coordinates' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[59], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m call \u001b[38;5;241m=\u001b[39m \u001b[43magent_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mWhere are we going?\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43mstatus\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mstatus\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 144\u001b[0m emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:550\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n\u001b[1;32m 545\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(args[\u001b[38;5;241m0\u001b[39m], callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n\u001b[1;32m 546\u001b[0m _output_key\n\u001b[1;32m 547\u001b[0m ]\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[0;32m--> 550\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m 551\u001b[0m _output_key\n\u001b[1;32m 552\u001b[0m ]\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m 555\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 556\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supported with either positional arguments or keyword arguments,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 557\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but none were provided.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 558\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 144\u001b[0m emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n\u001b[1;32m 347\u001b[0m \n\u001b[1;32m 348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;124;03m `Chain.output_keys`.\u001b[39;00m\n\u001b[1;32m 370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 372\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n\u001b[1;32m 373\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n\u001b[1;32m 374\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n\u001b[1;32m 375\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n\u001b[1;32m 376\u001b[0m }\n\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 380\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 162\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n\u001b[1;32m 152\u001b[0m outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m 156\u001b[0m )\n\u001b[1;32m 158\u001b[0m final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m 159\u001b[0m inputs, outputs, return_only_outputs\n\u001b[1;32m 160\u001b[0m )\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m 1430\u001b[0m \u001b[38;5;66;03m# We now enter the agent loop (until it returns something).\u001b[39;00m\n\u001b[1;32m 1431\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_continue(iterations, time_elapsed):\n\u001b[0;32m-> 1432\u001b[0m next_step_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1433\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1434\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1435\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1436\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1437\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1438\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1439\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(next_step_output, AgentFinish):\n\u001b[1;32m 1440\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_return(\n\u001b[1;32m 1441\u001b[0m next_step_output, intermediate_steps, run_manager\u001b[38;5;241m=\u001b[39mrun_manager\n\u001b[1;32m 1442\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1131\u001b[0m name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1135\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m 1137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m \u001b[43m[\u001b[49m\n\u001b[1;32m 1139\u001b[0m \u001b[43m \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m 1140\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1141\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1142\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1143\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1144\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1145\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1146\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1147\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 1148\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1131\u001b[0m name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1135\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m 1137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m \u001b[43m[\u001b[49m\n\u001b[1;32m 1139\u001b[0m \u001b[43m \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m 1140\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1141\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1142\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1143\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1144\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1145\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1146\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1147\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 1148\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1223\u001b[0m, in \u001b[0;36mAgentExecutor._iter_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m 1221\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m agent_action\n\u001b[1;32m 1222\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m agent_action \u001b[38;5;129;01min\u001b[39;00m actions:\n\u001b[0;32m-> 1223\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_perform_agent_action\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1224\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43magent_action\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\n\u001b[1;32m 1225\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1245\u001b[0m, in \u001b[0;36mAgentExecutor._perform_agent_action\u001b[0;34m(self, name_to_tool_map, color_mapping, agent_action, run_manager)\u001b[0m\n\u001b[1;32m 1243\u001b[0m tool_run_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mllm_prefix\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1244\u001b[0m \u001b[38;5;66;03m# We then call the tool on the tool input to get an observation\u001b[39;00m\n\u001b[0;32m-> 1245\u001b[0m observation \u001b[38;5;241m=\u001b[39m \u001b[43mtool\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1246\u001b[0m \u001b[43m \u001b[49m\u001b[43magent_action\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtool_input\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1247\u001b[0m \u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1248\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolor\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1249\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 1250\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mtool_run_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1251\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1252\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1253\u001b[0m tool_run_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39magent\u001b[38;5;241m.\u001b[39mtool_run_logging_kwargs()\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/tools.py:417\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, **kwargs)\u001b[0m\n\u001b[1;32m 415\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mException\u001b[39;00m, \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 416\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_tool_error(e)\n\u001b[0;32m--> 417\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 418\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 419\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_tool_end(observation, color\u001b[38;5;241m=\u001b[39mcolor, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/tools.py:376\u001b[0m, in \u001b[0;36mBaseTool.run\u001b[0;34m(self, tool_input, verbose, start_color, color, callbacks, tags, metadata, run_name, **kwargs)\u001b[0m\n\u001b[1;32m 373\u001b[0m parsed_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_parse_input(tool_input)\n\u001b[1;32m 374\u001b[0m tool_args, tool_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_to_args_and_kwargs(parsed_input)\n\u001b[1;32m 375\u001b[0m observation \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 376\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mtool_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mtool_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 378\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_run(\u001b[38;5;241m*\u001b[39mtool_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mtool_kwargs)\n\u001b[1;32m 379\u001b[0m )\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ValidationError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_validation_error:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/tools.py:697\u001b[0m, in \u001b[0;36mStructuredTool._run\u001b[0;34m(self, run_manager, *args, **kwargs)\u001b[0m\n\u001b[1;32m 688\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc:\n\u001b[1;32m 689\u001b[0m new_argument_supported \u001b[38;5;241m=\u001b[39m signature(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc)\u001b[38;5;241m.\u001b[39mparameters\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 690\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\n\u001b[1;32m 691\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc(\n\u001b[1;32m 692\u001b[0m \u001b[38;5;241m*\u001b[39margs,\n\u001b[1;32m 693\u001b[0m callbacks\u001b[38;5;241m=\u001b[39mrun_manager\u001b[38;5;241m.\u001b[39mget_child() \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 694\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 695\u001b[0m )\n\u001b[1;32m 696\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_argument_supported\n\u001b[0;32m--> 697\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 698\u001b[0m )\n\u001b[1;32m 699\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTool does not support sync\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/dev/uni/talking-car/skills/routing.py:39\u001b[0m, in \u001b[0;36mfind_route\u001b[0;34m(lat_depart, lon_depart, city_depart, address_destination, depart_time, **kwargs)\u001b[0m\n\u001b[1;32m 37\u001b[0m date \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2025-03-29T\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 38\u001b[0m departure_time \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m2024-02-01T\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m depart_time\n\u001b[0;32m---> 39\u001b[0m lat, lon, city \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_city_coordinates\u001b[49m(lat_depart,lon_depart,city_depart)\n\u001b[1;32m 40\u001b[0m lat_dest, lon_dest \u001b[38;5;241m=\u001b[39m find_coordinates(address_destination)\n\u001b[1;32m 41\u001b[0m \u001b[38;5;66;03m#print(lat_dest, lon_dest)\u001b[39;00m\n\u001b[1;32m 42\u001b[0m \n\u001b[1;32m 43\u001b[0m \u001b[38;5;66;03m#print(departure_time)\u001b[39;00m\n",
"\u001b[0;31mNameError\u001b[0m: name 'check_city_coordinates' is not defined"
]
}
],
"source": [
"call = agent_chain.run(\n",
" input=\"Where are we going?\",\n",
" status= status\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"kwargs: {'input': 'How is the weather in Tokyo?', 'intermediate_steps': []}\n"
]
},
{
"ename": "KeyError",
"evalue": "'history'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)\n",
"Cell \u001b[0;32mIn[94], line 1\u001b[0m\n",
"\u001b[0;32m----> 1\u001b[0m call \u001b[38;5;241m=\u001b[39m \u001b[43magent_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mHow is the weather in Tokyo?\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n",
"\u001b[1;32m 3\u001b[0m \u001b[43m)\u001b[49m\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
"\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
"\u001b[1;32m 144\u001b[0m emit_warning()\n",
"\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:545\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n",
"\u001b[1;32m 543\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n",
"\u001b[1;32m 544\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supports only one positional argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"\u001b[0;32m--> 545\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n",
"\u001b[1;32m 546\u001b[0m _output_key\n",
"\u001b[1;32m 547\u001b[0m ]\n",
"\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n",
"\u001b[1;32m 550\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(kwargs, callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n",
"\u001b[1;32m 551\u001b[0m _output_key\n",
"\u001b[1;32m 552\u001b[0m ]\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
"\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
"\u001b[1;32m 144\u001b[0m emit_warning()\n",
"\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n",
"\u001b[1;32m 346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n",
"\u001b[1;32m 347\u001b[0m \n",
"\u001b[1;32m 348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n",
"\u001b[0;32m (...)\u001b[0m\n",
"\u001b[1;32m 369\u001b[0m \u001b[38;5;124;03m `Chain.output_keys`.\u001b[39;00m\n",
"\u001b[1;32m 370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n",
"\u001b[1;32m 371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n",
"\u001b[1;32m 372\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n",
"\u001b[1;32m 373\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n",
"\u001b[1;32m 374\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n",
"\u001b[1;32m 375\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n",
"\u001b[1;32m 376\u001b[0m }\n",
"\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 380\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
"\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"\u001b[1;32m 162\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
"\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n",
"\u001b[1;32m 164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n",
"\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
"\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
"\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n",
"\u001b[1;32m 152\u001b[0m outputs \u001b[38;5;241m=\u001b[39m (\n",
"\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n",
"\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n",
"\u001b[1;32m 156\u001b[0m )\n",
"\u001b[1;32m 158\u001b[0m final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n",
"\u001b[1;32m 159\u001b[0m inputs, outputs, return_only_outputs\n",
"\u001b[1;32m 160\u001b[0m )\n",
"\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n",
"\u001b[1;32m 1430\u001b[0m \u001b[38;5;66;03m# We now enter the agent loop (until it returns something).\u001b[39;00m\n",
"\u001b[1;32m 1431\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_continue(iterations, time_elapsed):\n",
"\u001b[0;32m-> 1432\u001b[0m next_step_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_next_step\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 1433\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1434\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1435\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1436\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1437\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1438\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 1439\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(next_step_output, AgentFinish):\n",
"\u001b[1;32m 1440\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_return(\n",
"\u001b[1;32m 1441\u001b[0m next_step_output, intermediate_steps, run_manager\u001b[38;5;241m=\u001b[39mrun_manager\n",
"\u001b[1;32m 1442\u001b[0m )\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n",
"\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n",
"\u001b[1;32m 1130\u001b[0m \u001b[38;5;28mself\u001b[39m,\n",
"\u001b[1;32m 1131\u001b[0m name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n",
"\u001b[0;32m (...)\u001b[0m\n",
"\u001b[1;32m 1135\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
"\u001b[1;32m 1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n",
"\u001b[1;32m 1137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n",
"\u001b[0;32m-> 1138\u001b[0m \u001b[43m[\u001b[49m\n",
"\u001b[1;32m 1139\u001b[0m \u001b[43m \u001b[49m\u001b[43ma\u001b[49m\n",
"\u001b[1;32m 1140\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 1141\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1142\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1143\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1144\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1145\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1146\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 1147\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n",
"\u001b[1;32m 1148\u001b[0m )\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n",
"\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n",
"\u001b[1;32m 1130\u001b[0m \u001b[38;5;28mself\u001b[39m,\n",
"\u001b[1;32m 1131\u001b[0m name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n",
"\u001b[0;32m (...)\u001b[0m\n",
"\u001b[1;32m 1135\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
"\u001b[1;32m 1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n",
"\u001b[1;32m 1137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n",
"\u001b[0;32m-> 1138\u001b[0m \u001b[43m[\u001b[49m\n",
"\u001b[1;32m 1139\u001b[0m \u001b[43m \u001b[49m\u001b[43ma\u001b[49m\n",
"\u001b[1;32m 1140\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 1141\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1142\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1143\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1144\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1145\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1146\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 1147\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n",
"\u001b[1;32m 1148\u001b[0m )\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1166\u001b[0m, in \u001b[0;36mAgentExecutor._iter_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n",
"\u001b[1;32m 1163\u001b[0m intermediate_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_intermediate_steps(intermediate_steps)\n",
"\u001b[1;32m 1165\u001b[0m \u001b[38;5;66;03m# Call the LLM to see what to do.\u001b[39;00m\n",
"\u001b[0;32m-> 1166\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplan\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 1167\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1168\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1169\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 1170\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 1171\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m OutputParserException \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"\u001b[1;32m 1172\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_parsing_errors, \u001b[38;5;28mbool\u001b[39m):\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:618\u001b[0m, in \u001b[0;36mLLMSingleActionAgent.plan\u001b[0;34m(self, intermediate_steps, callbacks, **kwargs)\u001b[0m\n",
"\u001b[1;32m 601\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplan\u001b[39m(\n",
"\u001b[1;32m 602\u001b[0m \u001b[38;5;28mself\u001b[39m,\n",
"\u001b[1;32m 603\u001b[0m intermediate_steps: List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]],\n",
"\u001b[1;32m 604\u001b[0m callbacks: Callbacks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
"\u001b[1;32m 605\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n",
"\u001b[1;32m 606\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentAction, AgentFinish]:\n",
"\u001b[1;32m 607\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Given input, decided what to do.\u001b[39;00m\n",
"\u001b[1;32m 608\u001b[0m \n",
"\u001b[1;32m 609\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n",
"\u001b[0;32m (...)\u001b[0m\n",
"\u001b[1;32m 616\u001b[0m \u001b[38;5;124;03m Action specifying what tool to use.\u001b[39;00m\n",
"\u001b[1;32m 617\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n",
"\u001b[0;32m--> 618\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 619\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 620\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 621\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 622\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 623\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 624\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_parser\u001b[38;5;241m.\u001b[39mparse(output)\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
"\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
"\u001b[1;32m 144\u001b[0m emit_warning()\n",
"\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:550\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n",
"\u001b[1;32m 545\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(args[\u001b[38;5;241m0\u001b[39m], callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n",
"\u001b[1;32m 546\u001b[0m _output_key\n",
"\u001b[1;32m 547\u001b[0m ]\n",
"\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n",
"\u001b[0;32m--> 550\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n",
"\u001b[1;32m 551\u001b[0m _output_key\n",
"\u001b[1;32m 552\u001b[0m ]\n",
"\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n",
"\u001b[1;32m 555\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n",
"\u001b[1;32m 556\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supported with either positional arguments or keyword arguments,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
"\u001b[1;32m 557\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but none were provided.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
"\u001b[1;32m 558\u001b[0m )\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n",
"\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
"\u001b[1;32m 144\u001b[0m emit_warning()\n",
"\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n",
"\u001b[1;32m 346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n",
"\u001b[1;32m 347\u001b[0m \n",
"\u001b[1;32m 348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n",
"\u001b[0;32m (...)\u001b[0m\n",
"\u001b[1;32m 369\u001b[0m \u001b[38;5;124;03m `Chain.output_keys`.\u001b[39;00m\n",
"\u001b[1;32m 370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n",
"\u001b[1;32m 371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n",
"\u001b[1;32m 372\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n",
"\u001b[1;32m 373\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n",
"\u001b[1;32m 374\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n",
"\u001b[1;32m 375\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n",
"\u001b[1;32m 376\u001b[0m }\n",
"\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n",
"\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 380\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n",
"\u001b[1;32m 383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
"\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"\u001b[1;32m 162\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
"\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n",
"\u001b[1;32m 164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n",
"\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n",
"\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
"\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n",
"\u001b[1;32m 152\u001b[0m outputs \u001b[38;5;241m=\u001b[39m (\n",
"\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n",
"\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n",
"\u001b[1;32m 156\u001b[0m )\n",
"\u001b[1;32m 158\u001b[0m final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n",
"\u001b[1;32m 159\u001b[0m inputs, outputs, return_only_outputs\n",
"\u001b[1;32m 160\u001b[0m )\n",
"\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:103\u001b[0m, in \u001b[0;36mLLMChain._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n",
"\u001b[1;32m 98\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call\u001b[39m(\n",
"\u001b[1;32m 99\u001b[0m \u001b[38;5;28mself\u001b[39m,\n",
"\u001b[1;32m 100\u001b[0m inputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any],\n",
"\u001b[1;32m 101\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
"\u001b[1;32m 102\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dict[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mstr\u001b[39m]:\n",
"\u001b[0;32m--> 103\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_outputs(response)[\u001b[38;5;241m0\u001b[39m]\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:112\u001b[0m, in \u001b[0;36mLLMChain.generate\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n",
"\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate\u001b[39m(\n",
"\u001b[1;32m 107\u001b[0m \u001b[38;5;28mself\u001b[39m,\n",
"\u001b[1;32m 108\u001b[0m input_list: List[Dict[\u001b[38;5;28mstr\u001b[39m, Any]],\n",
"\u001b[1;32m 109\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n",
"\u001b[1;32m 110\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n",
"\u001b[1;32m 111\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Generate LLM result from inputs.\"\"\"\u001b[39;00m\n",
"\u001b[0;32m--> 112\u001b[0m prompts, stop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprep_prompts\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 113\u001b[0m callbacks \u001b[38;5;241m=\u001b[39m run_manager\u001b[38;5;241m.\u001b[39mget_child() \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
"\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mllm, BaseLanguageModel):\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:174\u001b[0m, in \u001b[0;36mLLMChain.prep_prompts\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n",
"\u001b[1;32m 172\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m inputs \u001b[38;5;129;01min\u001b[39;00m input_list:\n",
"\u001b[1;32m 173\u001b[0m selected_inputs \u001b[38;5;241m=\u001b[39m {k: inputs[k] \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprompt\u001b[38;5;241m.\u001b[39minput_variables}\n",
"\u001b[0;32m--> 174\u001b[0m prompt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat_prompt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mselected_inputs\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[1;32m 175\u001b[0m _colored_text \u001b[38;5;241m=\u001b[39m get_colored_text(prompt\u001b[38;5;241m.\u001b[39mto_string(), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgreen\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"\u001b[1;32m 176\u001b[0m _text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPrompt after formatting:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m _colored_text\n",
"\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/prompts/string.py:164\u001b[0m, in \u001b[0;36mStringPromptTemplate.format_prompt\u001b[0;34m(self, **kwargs)\u001b[0m\n",
"\u001b[1;32m 162\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mformat_prompt\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m PromptValue:\n",
"\u001b[1;32m 163\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Create Chat Messages.\"\"\"\u001b[39;00m\n",
"\u001b[0;32m--> 164\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m StringPromptValue(text\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m)\n",
"\n",
"Cell \u001b[0;32mIn[88], line 50\u001b[0m, in \u001b[0;36mRavenPromptTemplate.format\u001b[0;34m(self, **kwargs)\u001b[0m\n",
"\u001b[1;32m 48\u001b[0m prompt \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mFunction:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<func_start>def \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc_signature\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m<func_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_start>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfunc_docstring\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n",
"\u001b[1;32m 49\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraven_tools\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m prompt\n",
"\u001b[0;32m---> 50\u001b[0m pp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtemplate_func\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{{\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}}\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"\u001b[1;32m 51\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pp\n",
"\n",
"\u001b[0;31mKeyError\u001b[0m: 'history'"
]
}
],
"source": [
"call = agent_chain.run(\n",
" \"How is the weather in Tokyo?\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The current weather conditions in Tokyo, Japan are partly cloudy with temperatures of 17°C and a wind speed of 17.4 mph.'"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"call"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import ConversationBufferWindowMemory\n",
"memory = ConversationBufferWindowMemory(k=2)"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)\n"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"kwargs: {'input': 'How is the weather in Luxembourg?', 'intermediate_steps': []}\n"
]
},
{
"ename": "KeyError",
"evalue": "'history'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[96], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43magent_executor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mHow is the weather in Luxembourg?\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 144\u001b[0m emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:545\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n\u001b[1;32m 543\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 544\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supports only one positional argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 545\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m 546\u001b[0m _output_key\n\u001b[1;32m 547\u001b[0m ]\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m 550\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(kwargs, callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n\u001b[1;32m 551\u001b[0m _output_key\n\u001b[1;32m 552\u001b[0m ]\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 144\u001b[0m emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n\u001b[1;32m 347\u001b[0m \n\u001b[1;32m 348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;124;03m `Chain.output_keys`.\u001b[39;00m\n\u001b[1;32m 370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 372\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n\u001b[1;32m 373\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n\u001b[1;32m 374\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n\u001b[1;32m 375\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n\u001b[1;32m 376\u001b[0m }\n\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 380\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 162\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n\u001b[1;32m 152\u001b[0m outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m 156\u001b[0m )\n\u001b[1;32m 158\u001b[0m final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m 159\u001b[0m inputs, outputs, return_only_outputs\n\u001b[1;32m 160\u001b[0m )\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m, in \u001b[0;36mAgentExecutor._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m 1430\u001b[0m \u001b[38;5;66;03m# We now enter the agent loop (until it returns something).\u001b[39;00m\n\u001b[1;32m 1431\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_continue(iterations, time_elapsed):\n\u001b[0;32m-> 1432\u001b[0m next_step_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1433\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1434\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1435\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1436\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1437\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1438\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1439\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(next_step_output, AgentFinish):\n\u001b[1;32m 1440\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_return(\n\u001b[1;32m 1441\u001b[0m next_step_output, intermediate_steps, run_manager\u001b[38;5;241m=\u001b[39mrun_manager\n\u001b[1;32m 1442\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36mAgentExecutor._take_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1131\u001b[0m name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1135\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m 1137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m \u001b[43m[\u001b[49m\n\u001b[1;32m 1139\u001b[0m \u001b[43m \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m 1140\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1141\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1142\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1143\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1144\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1145\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1146\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1147\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 1148\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_next_step\u001b[39m(\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1131\u001b[0m name_to_tool_map: Dict[\u001b[38;5;28mstr\u001b[39m, BaseTool],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1135\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1136\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentFinish, List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]]]:\n\u001b[1;32m 1137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_consume_next_step(\n\u001b[0;32m-> 1138\u001b[0m \u001b[43m[\u001b[49m\n\u001b[1;32m 1139\u001b[0m \u001b[43m \u001b[49m\u001b[43ma\u001b[49m\n\u001b[1;32m 1140\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ma\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iter_next_step\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1141\u001b[0m \u001b[43m \u001b[49m\u001b[43mname_to_tool_map\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1142\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolor_mapping\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1143\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1144\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1145\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1146\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1147\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 1148\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1166\u001b[0m, in \u001b[0;36mAgentExecutor._iter_next_step\u001b[0;34m(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager)\u001b[0m\n\u001b[1;32m 1163\u001b[0m intermediate_steps \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_intermediate_steps(intermediate_steps)\n\u001b[1;32m 1165\u001b[0m \u001b[38;5;66;03m# Call the LLM to see what to do.\u001b[39;00m\n\u001b[0;32m-> 1166\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magent\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplan\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1167\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1168\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 1169\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1170\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1171\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m OutputParserException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1172\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_parsing_errors, \u001b[38;5;28mbool\u001b[39m):\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:618\u001b[0m, in \u001b[0;36mLLMSingleActionAgent.plan\u001b[0;34m(self, intermediate_steps, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m 601\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mplan\u001b[39m(\n\u001b[1;32m 602\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 603\u001b[0m intermediate_steps: List[Tuple[AgentAction, \u001b[38;5;28mstr\u001b[39m]],\n\u001b[1;32m 604\u001b[0m callbacks: Callbacks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 605\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 606\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Union[AgentAction, AgentFinish]:\n\u001b[1;32m 607\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Given input, decided what to do.\u001b[39;00m\n\u001b[1;32m 608\u001b[0m \n\u001b[1;32m 609\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 616\u001b[0m \u001b[38;5;124;03m Action specifying what tool to use.\u001b[39;00m\n\u001b[1;32m 617\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 618\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 619\u001b[0m \u001b[43m \u001b[49m\u001b[43mintermediate_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mintermediate_steps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 620\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 621\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 622\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 623\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 624\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_parser\u001b[38;5;241m.\u001b[39mparse(output)\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 144\u001b[0m emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:550\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, callbacks, tags, metadata, *args, **kwargs)\u001b[0m\n\u001b[1;32m 545\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(args[\u001b[38;5;241m0\u001b[39m], callbacks\u001b[38;5;241m=\u001b[39mcallbacks, tags\u001b[38;5;241m=\u001b[39mtags, metadata\u001b[38;5;241m=\u001b[39mmetadata)[\n\u001b[1;32m 546\u001b[0m _output_key\n\u001b[1;32m 547\u001b[0m ]\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[0;32m--> 550\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadata\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m 551\u001b[0m _output_key\n\u001b[1;32m 552\u001b[0m ]\n\u001b[1;32m 554\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m 555\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 556\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supported with either positional arguments or keyword arguments,\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 557\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m but none were provided.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 558\u001b[0m )\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m, in \u001b[0;36mdeprecated.<locals>.deprecate.<locals>.warning_emitting_wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 143\u001b[0m warned \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 144\u001b[0m emit_warning()\n\u001b[0;32m--> 145\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrapped\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)\u001b[0m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Execute the chain.\u001b[39;00m\n\u001b[1;32m 347\u001b[0m \n\u001b[1;32m 348\u001b[0m \u001b[38;5;124;03mArgs:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;124;03m `Chain.output_keys`.\u001b[39;00m\n\u001b[1;32m 370\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 371\u001b[0m config \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 372\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks,\n\u001b[1;32m 373\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtags\u001b[39m\u001b[38;5;124m\"\u001b[39m: tags,\n\u001b[1;32m 374\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m\"\u001b[39m: metadata,\n\u001b[1;32m 375\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_name\u001b[39m\u001b[38;5;124m\"\u001b[39m: run_name,\n\u001b[1;32m 376\u001b[0m }\n\u001b[0;32m--> 378\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 380\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast\u001b[49m\u001b[43m(\u001b[49m\u001b[43mRunnableConfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\u001b[43mk\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mv\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_only_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 382\u001b[0m \u001b[43m \u001b[49m\u001b[43minclude_run_info\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minclude_run_info\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 383\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 162\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n\u001b[1;32m 152\u001b[0m outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m 156\u001b[0m )\n\u001b[1;32m 158\u001b[0m final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m 159\u001b[0m inputs, outputs, return_only_outputs\n\u001b[1;32m 160\u001b[0m )\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:103\u001b[0m, in \u001b[0;36mLLMChain._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call\u001b[39m(\n\u001b[1;32m 99\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 100\u001b[0m inputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any],\n\u001b[1;32m 101\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 102\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dict[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mstr\u001b[39m]:\n\u001b[0;32m--> 103\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_outputs(response)[\u001b[38;5;241m0\u001b[39m]\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:112\u001b[0m, in \u001b[0;36mLLMChain.generate\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate\u001b[39m(\n\u001b[1;32m 107\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 108\u001b[0m input_list: List[Dict[\u001b[38;5;28mstr\u001b[39m, Any]],\n\u001b[1;32m 109\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 110\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n\u001b[1;32m 111\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Generate LLM result from inputs.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 112\u001b[0m prompts, stop \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprep_prompts\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 113\u001b[0m callbacks \u001b[38;5;241m=\u001b[39m run_manager\u001b[38;5;241m.\u001b[39mget_child() \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mllm, BaseLanguageModel):\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/llm.py:174\u001b[0m, in \u001b[0;36mLLMChain.prep_prompts\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m inputs \u001b[38;5;129;01min\u001b[39;00m input_list:\n\u001b[1;32m 173\u001b[0m selected_inputs \u001b[38;5;241m=\u001b[39m {k: inputs[k] \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprompt\u001b[38;5;241m.\u001b[39minput_variables}\n\u001b[0;32m--> 174\u001b[0m prompt \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat_prompt\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mselected_inputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 175\u001b[0m _colored_text \u001b[38;5;241m=\u001b[39m get_colored_text(prompt\u001b[38;5;241m.\u001b[39mto_string(), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgreen\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 176\u001b[0m _text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPrompt after formatting:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m _colored_text\n",
"File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/prompts/string.py:164\u001b[0m, in \u001b[0;36mStringPromptTemplate.format_prompt\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 162\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mformat_prompt\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m PromptValue:\n\u001b[1;32m 163\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Create Chat Messages.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 164\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m StringPromptValue(text\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m)\n",
"Cell \u001b[0;32mIn[88], line 50\u001b[0m, in \u001b[0;36mRavenPromptTemplate.format\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 48\u001b[0m prompt \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mFunction:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<func_start>def \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc_signature\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m<func_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_start>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mfunc_docstring\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m<docstring_end>\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 49\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraven_tools\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m prompt\n\u001b[0;32m---> 50\u001b[0m pp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtemplate_func\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mformat\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{{\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m{\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}}\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m}\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 51\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pp\n",
"\u001b[0;31mKeyError\u001b[0m: 'history'"
]
}
],
"source": [
"agent_executor.run(\"How is the weather in Luxembourg?\")"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"kwargs: {'input': 'How about in Dubai?', 'intermediate_steps': []}\n",
"llm_output: \n",
"Call: find_route(city_depart='Dubai', address_destination='', depart_time=) \n"
]
},
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<string>, line 1)",
"output_type": "error",
"traceback": [
"Traceback \u001b[0;36m(most recent call last)\u001b[0m:\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/IPython/core/interactiveshell.py:3577\u001b[0m in \u001b[1;35mrun_code\u001b[0m\n exec(code_obj, self.user_global_ns, self.user_ns)\u001b[0m\n",
"\u001b[0m Cell \u001b[1;32mIn[87], line 1\u001b[0m\n agent_executor.run(\"How about in Dubai?\")\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m in \u001b[1;35mwarning_emitting_wrapper\u001b[0m\n return wrapped(*args, **kwargs)\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:545\u001b[0m in \u001b[1;35mrun\u001b[0m\n return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:145\u001b[0m in \u001b[1;35mwarning_emitting_wrapper\u001b[0m\n return wrapped(*args, **kwargs)\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:378\u001b[0m in \u001b[1;35m__call__\u001b[0m\n return self.invoke(\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:163\u001b[0m in \u001b[1;35minvoke\u001b[0m\n raise e\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/chains/base.py:153\u001b[0m in \u001b[1;35minvoke\u001b[0m\n self._call(inputs, run_manager=run_manager)\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1432\u001b[0m in \u001b[1;35m_call\u001b[0m\n next_step_output = self._take_next_step(\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m in \u001b[1;35m_take_next_step\u001b[0m\n [\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1138\u001b[0m in \u001b[1;35m<listcomp>\u001b[0m\n [\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:1166\u001b[0m in \u001b[1;35m_iter_next_step\u001b[0m\n output = self.agent.plan(\u001b[0m\n",
"\u001b[0m File \u001b[1;32m/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/langchain/agents/agent.py:624\u001b[0m in \u001b[1;35mplan\u001b[0m\n return self.output_parser.parse(output)\u001b[0m\n",
"\u001b[0m Cell \u001b[1;32mIn[51], line 21\u001b[0m in \u001b[1;35mparse\u001b[0m\n func_name, args = extract_func_args(llm_output)\u001b[0m\n",
"\u001b[0;36m File \u001b[0;32m~/dev/uni/talking-car/skills/common.py:41\u001b[0;36m in \u001b[0;35mextract_func_args\u001b[0;36m\n\u001b[0;31m arguments = eval(f\"dict{text.split(function_name)[1].strip()}\")\u001b[0;36m\n",
"\u001b[0;36m File \u001b[0;32m<string>:1\u001b[0;36m\u001b[0m\n\u001b[0;31m dict(city_depart='Dubai', address_destination='', depart_time=)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"source": [
"agent_executor.run(\"How about in Dubai?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)\n",
"\n",
"demo_ephemeral_chat_history_for_chain = ChatMessageHistory()\n",
"conversational_agent_executor = RunnableWithMessageHistory(\n",
" agent_executor,\n",
" lambda session_id: demo_ephemeral_chat_history_for_chain,\n",
" input_messages_key=\"input\",\n",
" output_messages_key=\"output\",\n",
" history_messages_key=\"chat_history\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"\n",
"##############################\n",
"# Step 3: Construct Prompt ###\n",
"##############################\n",
"\n",
"\n",
"def construct_prompt(user_query: str, context):\n",
" formatted_prompt = format_functions_for_prompt(get_weather, find_points_of_interest, find_route, get_forecast, search_along_route)\n",
" formatted_prompt += f'\\n\\nContext : {context}'\n",
" formatted_prompt += f\"\\n\\nUser Query: Question: {user_query}\\n\"\n",
"\n",
" prompt = (\n",
" \"<human>:\\n\"\n",
" + formatted_prompt\n",
" + \"Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>\"\n",
" )\n",
" return prompt\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"# convert bytes to megabytes\n",
"def get_cuda_usage(): return round(torch.cuda.memory_allocated(\"cuda:0\")/1024/1024,2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# might be deleted\n",
"# Compute a Simple equation\n",
"print(f\"before everything: {get_cuda_usage()}\")\n",
"prompt = construct_prompt(\"What restaurants are there on the road from Luxembourg Gare, which coordinates are lat 49.5999681, lon 6.1342493, to Thionville?\", \"\")\n",
"print(f\"after creating prompt: {get_cuda_usage()}\")\n",
"model_output = pipe(\n",
" prompt, do_sample=False, max_new_tokens=300, return_full_text=False\n",
" )\n",
"print(model_output[0][\"generated_text\"])\n",
"#execute_function_call(pipe(construct_prompt(\"Is it raining in Belval, ?\"), do_sample=False, max_new_tokens=300, return_full_text=False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"creating the pipe of model output: {get_cuda_usage()}\")\n",
"result = execute_function_call(model_output)\n",
"print(f\"after execute function call: {get_cuda_usage()}\")\n",
"del model_output\n",
"import gc # garbage collect library\n",
"gc.collect()\n",
"torch.cuda.empty_cache() \n",
"print(f\"after garbage collect and empty_cache: {get_cuda_usage()}\")\n",
"#print(\"Model Output:\", model_output)\n",
"# print(\"Execution Result:\", result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## functions to process the anwser and the question"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#generation of text with Stable beluga \n",
"def gen(p, maxlen=15, sample=True):\n",
" toks = tokr(p, return_tensors=\"pt\")\n",
" res = model.generate(**toks.to(\"cuda\"), max_new_tokens=maxlen, do_sample=sample).to('cpu')\n",
" return tokr.batch_decode(res)\n",
"\n",
"#to have a prompt corresponding to the specific format required by the fine-tuned model Stable Beluga\n",
"def mk_prompt(user, syst=\"### System:\\nYou are a useful AI assistant in a car, that follows instructions extremely well. Help as much as you can. Answer questions concisely and do not mention what you base your reply on.\\n\\n\"): return f\"{syst}### User: {user}\\n\\n### Assistant:\\n\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yAJI0WyOLE8G"
},
"outputs": [],
"source": [
"def car_answer_only(complete_answer, general_context):\n",
" \"\"\"returns only the AI assistant answer, without all context, to reply to the user\"\"\"\n",
" pattern = r\"Assistant:\\\\n(.*)(</s>|[.!?](\\s|$))\" #pattern = r\"Assistant:\\\\n(.*?)</s>\"\n",
"\n",
" match = re.search(pattern, complete_answer, re.DOTALL)\n",
"\n",
" if match:\n",
" # Extracting the text\n",
" model_answer = match.group(1)\n",
" #print(complete_answer)\n",
" else:\n",
" #print(complete_answer)\n",
" model_answer = \"There has been an error with the generated response.\" \n",
"\n",
" general_context += model_answer\n",
" return (model_answer, general_context)\n",
"#print(model_answer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ViCEgogaENNV"
},
"outputs": [],
"source": [
"def FnAnswer(general_context, ques, place, time, delete_history, state):\n",
" \"\"\"function to manage the two different llms (function calling and basic answer) and call them one after the other\"\"\"\n",
" # Initialize state if it is None\n",
" if delete_history == \"Yes\":\n",
" state = None\n",
" if state is None:\n",
" conv_context = []\n",
" conv_context.append(general_context)\n",
" state = {}\n",
" state['context'] = conv_context\n",
" state['number'] = 0\n",
" state['last_question'] = \"\"\n",
" \n",
" if type(ques) != str: \n",
" ques = ques[0]\n",
" \n",
" place = definePlace(place) #which on the predefined places it is\n",
" \n",
" formatted_context = '\\n'.join(state['context'])\n",
" \n",
" #updated at every question\n",
" general_context = f\"\"\"\n",
" Recent conversation history: '{formatted_context}' (If empty, this indicates the beginning of the conversation).\n",
"\n",
" Previous question from the user: '{state['last_question']}' (This may or may not be related to the current question).\n",
"\n",
" User information: The user is inside a car in {place[0]}, with latitude {place[1]} and longitude {place[2]}. The user is mobile and can drive to different destinations. It is currently {time}\n",
"\n",
" \"\"\"\n",
" #first llm call (function calling model, NexusRaven)\n",
" model_output= pipe(construct_prompt(ques, general_context), do_sample=False, max_new_tokens=300, return_full_text=False)\n",
" call = execute_function_call(model_output) #call variable is formatted to as a call to a specific function with the required parameters\n",
" print(call)\n",
" #this is what will erase the model_output from the GPU memory to free up space\n",
" del model_output\n",
" import gc # garbage collect library\n",
" gc.collect()\n",
" torch.cuda.empty_cache() \n",
" \n",
" #updated at every question\n",
" general_context += f'This information might be of help, use if it seems relevant, and ignore if not relevant to reply to the user: \"{call}\". '\n",
" \n",
" #question formatted for the StableBeluga llm (second llm), using the output of the first llm as context in general_context\n",
" question=f\"\"\"Reply to the user and answer any question with the help of the provided context.\n",
"\n",
" ## Context\n",
"\n",
" {general_context} .\n",
"\n",
" ## Question\n",
"\n",
" {ques}\"\"\"\n",
"\n",
" complete_answer = str(gen(mk_prompt(question), 100)) #answer generation with StableBeluga (2nd llm)\n",
"\n",
" model_answer, general_context= car_answer_only(complete_answer, general_context) #to retrieve only the car answer \n",
" \n",
" language = pipe_language(model_answer, top_k=1, truncation=True)[0]['label'] #detect the language of the answer, to modify the text-to-speech consequently\n",
" \n",
" state['last_question'] = ques #add the current question as 'last question' for the next question's context\n",
" \n",
" state['number']= state['number'] + 1 #adds 1 to the number of interactions with the car\n",
"\n",
" state['context'].append(str(state['number']) + '. User question: '+ ques + ', Model answer: ' + model_answer) #modifies the context\n",
" \n",
" #print(\"contexte : \" + '\\n'.join(state['context']))\n",
" \n",
" if len(state['context'])>5: #6 questions maximum in the context to avoid having too many information\n",
" state['context'] = state['context'][1:]\n",
"\n",
" return model_answer, state['context'], state, language"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9WQlYePVLrTN"
},
"outputs": [],
"source": [
"def transcript(general_context, link_to_audio, voice, place, time, delete_history, state):\n",
" \"\"\"this function manages speech-to-text to input Fnanswer function and text-to-speech with the Fnanswer output\"\"\"\n",
" # load audio from a specific path\n",
" audio_path = link_to_audio\n",
" audio_array, sampling_rate = librosa.load(link_to_audio, sr=16000) # \"sr=16000\" ensures that the sampling rate is as required\n",
"\n",
"\n",
" # process the audio array\n",
" input_features = processor(audio_array, sampling_rate, return_tensors=\"pt\").input_features\n",
"\n",
"\n",
" predicted_ids = modelw.generate(input_features)\n",
"\n",
" transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)\n",
"\n",
" quest_processing = FnAnswer(general_context, transcription, place, time, delete_history, state)\n",
" \n",
" state=quest_processing[2]\n",
" \n",
" print(\"langue \" + quest_processing[3])\n",
"\n",
" tts.tts_to_file(text= str(quest_processing[0]),\n",
" file_path=\"output.wav\",\n",
" speaker_wav=f'Audio_Files/{voice}.wav',\n",
" language=quest_processing[3],\n",
" emotion = \"angry\")\n",
"\n",
" audio_path = \"output.wav\"\n",
" return audio_path, state['context'], state"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def definePlace(place):\n",
" if(place == 'Luxembourg Gare, Luxembourg'):\n",
" return('Luxembourg Gare', '49.5999681', '6.1342493' )\n",
" elif (place =='Kirchberg Campus, Kirchberg'):\n",
" return('Kirchberg Campus, Luxembourg', '49.62571206478235', '6.160082636815114')\n",
" elif (place =='Belval Campus, Belval'):\n",
" return('Belval-Université, Esch-sur-Alzette', '49.499531', '5.9462903')\n",
" elif (place =='Eiffel Tower, Paris'):\n",
" return('Eiffel Tower, Paris', '48.8582599', '2.2945006')\n",
" elif (place=='Thionville, France'):\n",
" return('Thionville, France', '49.357927', '6.167587')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Interfaces (text and audio)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#INTERFACE WITH ONLY TEXT\n",
"\n",
"# Generate options for hours (00-23) \n",
"hour_options = [f\"{i:02d}:00:00\" for i in range(24)]\n",
"\n",
"model_answer= ''\n",
"general_context= ''\n",
"# Define the initial state with some initial context.\n",
"print(general_context)\n",
"initial_state = {'context': general_context}\n",
"initial_context= initial_state['context']\n",
"# Create the Gradio interface.\n",
"iface = gr.Interface(\n",
" fn=FnAnswer,\n",
" inputs=[\n",
" gr.Textbox(value=initial_context, visible=False),\n",
" gr.Textbox(lines=2, placeholder=\"Type your message here...\"),\n",
" gr.Radio(choices=['Luxembourg Gare, Luxembourg', 'Kirchberg Campus, Kirchberg', 'Belval Campus, Belval', 'Eiffel Tower, Paris', 'Thionville, France'], label='Choose a location for your car', value= 'Kirchberg Campus, Kirchberg', show_label=True),\n",
" gr.Dropdown(choices=hour_options, label=\"What time is it?\", value = \"08:00:00\"),\n",
" gr.Radio([\"Yes\", \"No\"], label=\"Delete the conversation history?\", value = 'No'),\n",
" gr.State() # This will keep track of the context state across interactions.\n",
" ],\n",
" outputs=[\n",
" gr.Textbox(),\n",
" gr.Textbox(visible=False),\n",
" gr.State()\n",
" ]\n",
")\n",
"gr.close_all()\n",
"# Launch the interface.\n",
"iface.launch(debug=True, share=True, server_name=\"0.0.0.0\", server_port=7860)\n",
"#contextual=gr.Textbox(value=general_context, visible=False)\n",
"#demo = gr.Interface(fn=FnAnswer, inputs=[contextual,\"text\"], outputs=[\"text\", contextual])\n",
"\n",
"#demo.launch()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Other possible APIs to use"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def search_nearby(lat, lon, city, key):\n",
" \"\"\"\n",
" :param lat: latitude\n",
" :param lon: longitude\n",
" :param key: api key\n",
" :param type: type of poi\n",
" :return: [5] results ['poi']['name']/['freeformAddress'] || ['position']['lat']/['lon']\n",
" \"\"\"\n",
" results = []\n",
"\n",
" r = requests.get('https://api.tomtom.com/search/2/nearbySearch/.json?key={0}&lat={1}&lon={2}&radius=10000&limit=50'.format(\n",
" key,\n",
" lat,\n",
" lon\n",
" ))\n",
"\n",
" for result in r.json()['results']:\n",
" results.append(f\"The {' '.join(result['poi']['categories'])} {result['poi']['name']} is {int(result['dist'])} meters far from {city}\")\n",
" if len(results) == 7:\n",
" break\n",
"\n",
" return \". \".join(results)\n",
"\n",
"\n",
"print(search_nearby('49.625892805337514', '6.160417066963513', 'your location', TOMTOM_KEY))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|