File size: 17,206 Bytes
121edfd c3baa67 dca05b7 c3baa67 fc97145 121edfd fc97145 121edfd fc97145 338197e fc97145 9ab0127 fc97145 338197e fc97145 338197e fc97145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
subprocess.run(
"python -m unidic download",
shell=True,
)
import gradio as gr
import spaces
from langchain.tools import tool
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.utils.function_calling import convert_to_openai_tool
from loguru import logger
from kitt.core import tts_gradio
from kitt.core import utils as kitt_utils
from kitt.core import voice_options
from kitt.core.model import generate_function_call as process_query
from kitt.core.stt import transcribe_audio
from kitt.core.tts import prep_for_tts, run_melo_tts, run_tts_replicate
from kitt.skills import (
code_interpreter,
date_time_info,
do_anything_else,
extract_func_args,
find_route,
get_forecast,
get_weather,
get_weather_current_location,
search_along_route_w_coordinates,
search_points_of_interest,
set_vehicle_destination,
set_vehicle_speed,
)
from kitt.skills.common import config, vehicle
from kitt.skills.routing import calculate_route, find_address
ORIGIN = "Luxembourg, Luxembourg"
DESTINATION = "Paris, France"
DEFAULT_LLM_BACKEND = "local"
ENABLE_HISTORY = True
ENABLE_TTS = True
TTS_BACKEND = "local"
USER_PREFERENCES = "User prefers italian food."
global_context = {
"vehicle": vehicle,
"query": "How is the weather?",
"route_points": [],
"origin": ORIGIN,
"destination": DESTINATION,
"enable_history": ENABLE_HISTORY,
"tts_enabled": ENABLE_TTS,
"tts_backend": TTS_BACKEND,
"llm_backend": DEFAULT_LLM_BACKEND,
"map_origin": ORIGIN,
"map_destination": DESTINATION,
"update_proxy": 0,
"map": None,
}
speaker_embedding_cache = {}
history = ChatMessageHistory()
# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00:00" for i in range(24)]
@tool
def search_along_route(query=""):
"""Search for points of interest along the route/way to the destination.
Args:
query (str, optional): The type of point of interest to search for. Defaults to "restaurant".
"""
points = global_context["route_points"]
# maybe reshape
return search_along_route_w_coordinates(points, query)
def set_time(time_picker):
vehicle.time = time_picker
return vehicle
functions = [
# set_vehicle_speed,
set_vehicle_destination,
get_weather,
find_route,
search_points_of_interest,
search_along_route,
]
openai_tools = [convert_to_openai_tool(tool) for tool in functions]
def clear_history():
logger.info("Clearing the conversation history...")
history.clear()
@spaces.GPU
def run_llama3_model(query, voice_character, state):
assert len(functions) > 0, "No functions to call"
assert len(openai_tools) > 0, "No openai tools to call"
output_text = process_query(
query,
history=history,
user_preferences=state["user_preferences"],
tools=openai_tools,
functions=functions,
backend=state["llm_backend"],
)
gr.Info(f"Output text: {output_text}\nGenerating voice output...")
output_text_tts = prep_for_tts(output_text)
voice_out = None
if global_context["tts_enabled"]:
if "Fast" in voice_character:
voice_out = run_melo_tts(output_text_tts, voice_character)
elif global_context["tts_backend"] == "replicate":
voice_out = run_tts_replicate(output_text_tts, voice_character)
else:
voice_out = tts_gradio(
output_text_tts, voice_character, speaker_embedding_cache
)[0]
return (
output_text,
voice_out,
)
def run_model(query, voice_character, state):
model = state.get("model", "llama3")
query = query.strip().replace("'", "")
logger.info(
f"Running model: {model} with query: {query}, voice_character: {voice_character} and llm_backend: {state['llm_backend']}, tts_enabled: {state['tts_enabled']}"
)
global_context["query"] = query
text, voice = run_llama3_model(query, voice_character, state)
if not state["enable_history"]:
history.clear()
global_context["update_proxy"] += 1
return (
text,
voice,
vehicle.model_dump(),
state,
dict(update_proxy=global_context["update_proxy"]),
)
def calculate_route_gradio(origin, destination):
_, points = calculate_route(origin, destination)
plot = kitt_utils.plot_route(points, vehicle=vehicle.location_coordinates)
global_context["map"] = plot
global_context["route_points"] = points
# state.value["route_points"] = points
vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
return plot, vehicle.model_dump(), 0
def update_vehicle_status(trip_progress, origin, destination, state):
if not global_context["route_points"]:
_, points = calculate_route(origin, destination)
global_context["route_points"] = points
global_context["destination"] = destination
global_context["route_points"] = global_context["route_points"]
n_points = len(global_context["route_points"])
index = min(int(trip_progress / 100 * n_points), n_points - 1)
logger.info(f"Trip progress: {trip_progress} len: {n_points}, index: {index}")
new_coords = global_context["route_points"][index]
new_coords = new_coords["latitude"], new_coords["longitude"]
logger.info(
f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}"
)
vehicle.location_coordinates = new_coords
new_vehicle_location = find_address(new_coords[0], new_coords[1])
vehicle.location = new_vehicle_location
plot = kitt_utils.plot_route(
global_context["route_points"], vehicle=vehicle.location_coordinates
)
return vehicle, plot, state
@spaces.GPU
def save_and_transcribe_run_model(audio, voice_character, state):
text = transcribe_audio(audio)
out_text, out_voice, vehicle_status, state, update_proxy = run_model(
text, voice_character, state
)
return None, text, out_text, out_voice, vehicle_status, state, update_proxy
def set_tts_enabled(tts_enabled, state):
new_tts_enabled = tts_enabled == "Yes"
logger.info(
f"TTS enabled was {state['tts_enabled']} and changed to {new_tts_enabled}"
)
state["tts_enabled"] = new_tts_enabled
global_context["tts_enabled"] = new_tts_enabled
return state
def set_llm_backend(llm_backend, state):
assert llm_backend in ["Ollama", "Replicate", "Local"], "Invalid LLM backend"
new_llm_backend = llm_backend.lower()
logger.info(
f"LLM backend was {state['llm_backend']} and changed to {new_llm_backend}"
)
state["llm_backend"] = new_llm_backend
global_context["llm_backend"] = new_llm_backend
return state
def set_user_preferences(preferences, state):
new_preferences = preferences
logger.info(f"User preferences changed to: {new_preferences}")
state["user_preferences"] = new_preferences
global_context["user_preferences"] = new_preferences
return state
def set_enable_history(enable_history, state):
new_enable_history = enable_history == "Yes"
logger.info(
f"Enable history was {state['enable_history']} and changed to {new_enable_history}"
)
state["enable_history"] = new_enable_history
global_context["enable_history"] = new_enable_history
return state
def set_tts_backend(tts_backend, state):
new_tts_backend = tts_backend.lower()
logger.info(
f"TTS backend was {state['tts_backend']} and changed to {new_tts_backend}"
)
state["tts_backend"] = new_tts_backend
global_context["tts_backend"] = new_tts_backend
return state
def conditional_update():
if global_context["destination"] != vehicle.destination:
global_context["destination"] = vehicle.destination
if global_context["origin"] != vehicle.location:
global_context["origin"] = vehicle.location
if (
global_context["map_origin"] != vehicle.location
or global_context["map_destination"] != vehicle.destination
or global_context["update_proxy"] == 0
):
logger.info(f"Updating the map plot... in conditional_update")
map_plot, _, _ = calculate_route_gradio(vehicle.location, vehicle.destination)
global_context["map"] = map_plot
return global_context["map"]
# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome
# example question:
# what's the weather like outside?
# What's the closest restaurant from here?
def create_demo(tts_server: bool = False, model="llama3"):
print(f"Running the demo with model: {model} and TTSServer: {tts_server}")
with gr.Blocks(theme=gr.themes.Default(), title="KITT") as demo:
state = gr.State(
value={
# "context": initial_context,
"query": "",
"route_points": [],
"model": model,
"tts_enabled": ENABLE_TTS,
"llm_backend": DEFAULT_LLM_BACKEND,
"user_preferences": USER_PREFERENCES,
"enable_history": ENABLE_HISTORY,
"tts_backend": TTS_BACKEND,
"destination": DESTINATION,
}
)
plot, _, _ = calculate_route_gradio(ORIGIN, DESTINATION)
global_context["map"] = plot
with gr.Row():
# with gr.Row():
# gr.Text("KITT", interactive=False)
with gr.Column(scale=1, min_width=300):
vehicle_status = gr.JSON(
value=vehicle.model_dump(), label="Vehicle status"
)
time_picker = gr.Dropdown(
choices=hour_options,
label="What time is it? (HH:MM)",
value="08:00:00",
interactive=True,
)
voice_character = gr.Radio(
choices=voice_options,
label="Choose a voice",
value=voice_options[0],
show_label=True,
)
# voice_character = gr.Textbox(
# label="Choose a voice",
# value="freeman",
# show_label=True,
# )
origin = gr.Textbox(
value=ORIGIN,
label="Origin",
interactive=True,
)
destination = gr.Textbox(
value=DESTINATION,
label="Destination",
interactive=True,
)
preferences = gr.Textbox(
value=USER_PREFERENCES,
label="User preferences",
lines=3,
interactive=True,
)
with gr.Column(scale=2, min_width=600):
map_plot = gr.Plot(value=plot, label="Map")
trip_progress = gr.Slider(
0, 100, step=5, label="Trip progress", interactive=True
)
# with gr.Column(scale=1, min_width=300):
# gr.Image("linkedin-1.png", label="Linkedin - Sasan Jafarnejad")
# gr.Image(
# "team-ubix.png",
# label="Research Team - UBIX - University of Luxembourg",
# )
with gr.Row():
with gr.Column():
input_audio = gr.Audio(
type="numpy",
sources=["microphone"],
label="Input audio",
elem_id="input_audio",
)
input_text = gr.Textbox(
value="How is the weather?", label="Input text", interactive=True
)
with gr.Accordion("Debug"):
input_audio_debug = gr.Audio(
type="numpy",
sources=["microphone"],
label="Input audio",
elem_id="input_audio",
)
input_text_debug = gr.Textbox(
value="How is the weather?",
label="Input text",
interactive=True,
)
update_proxy = gr.JSON(
value=dict(update_proxy=0),
label="Global context",
)
with gr.Accordion("Config"):
tts_enabled = gr.Radio(
["Yes", "No"],
label="Enable TTS",
value="Yes" if ENABLE_TTS else "No",
interactive=True,
)
tts_backend = gr.Radio(
["Local"],
label="TTS Backend",
value=TTS_BACKEND.title(),
interactive=True,
)
llm_backend = gr.Radio(
choices=["Ollama", "Local"],
label="LLM Backend",
value=DEFAULT_LLM_BACKEND.title(),
interactive=True,
)
enable_history = gr.Radio(
["Yes", "No"],
label="Maintain the conversation history?",
value="Yes" if ENABLE_HISTORY else "No",
interactive=True,
)
# Push button
clear_history_btn = gr.Button(value="Clear History")
with gr.Column():
output_audio = gr.Audio(label="output audio", autoplay=True)
output_text = gr.TextArea(
value="", label="Output text", interactive=False
)
# Update plot based on the origin and destination
# Sets the current location and destination
origin.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status, trip_progress],
)
destination.submit(
fn=calculate_route_gradio,
inputs=[origin, destination],
outputs=[map_plot, vehicle_status, trip_progress],
)
preferences.submit(
fn=set_user_preferences, inputs=[preferences, state], outputs=[state]
)
# Update time based on the time picker
time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])
# Run the model if the input text is changed
input_text.submit(
fn=run_model,
inputs=[input_text, voice_character, state],
outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
)
input_text_debug.submit(
fn=run_model,
inputs=[input_text_debug, voice_character, state],
outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
)
# Set the vehicle status based on the trip progress
trip_progress.release(
fn=update_vehicle_status,
inputs=[trip_progress, origin, destination, state],
outputs=[vehicle_status, map_plot, state],
)
# Save and transcribe the audio
input_audio.stop_recording(
fn=save_and_transcribe_run_model,
inputs=[input_audio, voice_character, state],
outputs=[
input_audio,
input_text,
output_text,
output_audio,
vehicle_status,
state,
update_proxy,
],
)
input_audio_debug.stop_recording(
fn=transcribe_audio,
inputs=[input_audio_debug],
outputs=[input_text_debug],
)
# Clear the history
clear_history_btn.click(fn=clear_history, inputs=[], outputs=[])
# Config
tts_enabled.change(
fn=set_tts_enabled, inputs=[tts_enabled, state], outputs=[state]
)
tts_backend.change(
fn=set_tts_backend, inputs=[tts_backend, state], outputs=[state]
)
llm_backend.change(
fn=set_llm_backend, inputs=[llm_backend, state], outputs=[state]
)
enable_history.change(
fn=set_enable_history, inputs=[enable_history, state], outputs=[state]
)
update_proxy.change(fn=conditional_update, inputs=[], outputs=[map_plot])
return demo
# close all interfaces open to make the port available
gr.close_all()
demo = create_demo(False, "llama3")
demo.launch(
debug=True,
server_name="0.0.0.0",
server_port=7860,
ssl_verify=False,
share=False,
)
|