KITT / kitt /core /__init__.py
sasan's picture
chore: Update vehicle destination in calculate_route function
5dbfb3f
raw
history blame
6.26 kB
import os
from collections import namedtuple
import time
import pathlib
from typing import List
import numpy as np
import torch
from TTS.api import TTS
os.environ["COQUI_TOS_AGREED"] = "1"
tts_pipeline = None
Voice = namedtuple("voice", ["name", "neutral", "angry", "speed"])
file_full_path = pathlib.Path(os.path.realpath(__file__)).parent
voices = [
Voice(
"Attenborough",
neutral=f"{file_full_path}/audio/attenborough/neutral.wav",
angry=None,
speed=1.1,
),
Voice(
"Rick",
neutral=f"{file_full_path}/audio/rick/neutral.wav",
angry=None,
speed=1.1,
),
Voice(
"Freeman",
neutral=f"{file_full_path}/audio/freeman/neutral.wav",
angry="audio/freeman/angry.wav",
speed=1.1,
),
Voice(
"Walken",
neutral=f"{file_full_path}/audio/walken/neutral.wav",
angry=None,
speed=1.1,
),
Voice(
"Darth Wader",
neutral=f"{file_full_path}/audio/darth/neutral.wav",
angry=None,
speed=1.1,
),
]
def load_tts_pipeline():
# load model for text to speech
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "mps"
tts_pipeline = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
return tts_pipeline
def compute_speaker_embedding(voice_path: str, config, pipeline, cache):
if voice_path not in cache:
cache[voice_path] = pipeline.synthesizer.tts_model.get_conditioning_latents(
audio_path=voice_path,
gpt_cond_len=config.gpt_cond_len,
gpt_cond_chunk_len=config.gpt_cond_chunk_len,
max_ref_length=config.max_ref_len,
sound_norm_refs=config.sound_norm_refs,
)
return cache[voice_path]
voice_options = []
for voice in voices:
if voice.neutral:
voice_options.append(f"{voice.name} - Neutral")
if voice.angry:
voice_options.append(f"{voice.name} - Angry")
def voice_from_text(voice):
for v in voices:
if voice == f"{v.name} - Neutral":
return v.neutral
if voice == f"{v.name} - Angry":
return v.angry
raise ValueError(f"Voice {voice} not found.")
def speed_from_text(voice):
for v in voices:
if voice == f"{v.name} - Neutral":
return v.speed
if voice == f"{v.name} - Angry":
return v.speed
def tts(
self,
text: str = "",
language_name: str = "",
reference_wav=None,
gpt_cond_latent=None,
speaker_embedding=None,
split_sentences: bool = True,
**kwargs,
) -> List[int]:
"""🐸 TTS magic. Run all the models and generate speech.
Args:
text (str): input text.
speaker_name (str, optional): speaker id for multi-speaker models. Defaults to "".
language_name (str, optional): language id for multi-language models. Defaults to "".
speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None.
style_wav ([type], optional): style waveform for GST. Defaults to None.
style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None.
reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None.
reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None.
split_sentences (bool, optional): split the input text into sentences. Defaults to True.
**kwargs: additional arguments to pass to the TTS model.
Returns:
List[int]: [description]
"""
start_time = time.time()
use_gl = self.vocoder_model is None
wavs = []
if not text and not reference_wav:
raise ValueError(
"You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API."
)
if text:
sens = [text]
if split_sentences:
print(" > Text splitted to sentences.")
sens = self.split_into_sentences(text)
print(sens)
if not reference_wav: # not voice conversion
for sen in sens:
outputs = self.tts_model.inference(
sen,
language_name,
gpt_cond_latent,
speaker_embedding,
# GPT inference
temperature=0.75,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=50,
top_p=0.85,
do_sample=True,
**kwargs,
)
waveform = outputs["wav"]
if (
torch.is_tensor(waveform)
and waveform.device != torch.device("cpu")
and not use_gl
):
waveform = waveform.cpu()
if not use_gl:
waveform = waveform.numpy()
waveform = waveform.squeeze()
# # trim silence
# if (
# "do_trim_silence" in self.tts_config.audio
# and self.tts_config.audio["do_trim_silence"]
# ):
# waveform = trim_silence(waveform, self.tts_model.ap)
wavs += list(waveform)
wavs += [0] * 10000
# compute stats
process_time = time.time() - start_time
audio_time = len(wavs) / self.tts_config.audio["sample_rate"]
print(f" > Processing time: {process_time}")
print(f" > Real-time factor: {process_time / audio_time}")
return wavs
def tts_gradio(text, voice, cache):
global tts_pipeline
if not tts_pipeline:
tts_pipeline = load_tts_pipeline()
voice_path = voice_from_text(voice)
speed = speed_from_text(voice)
(gpt_cond_latent, speaker_embedding) = compute_speaker_embedding(
voice_path, tts_pipeline.synthesizer.tts_config, tts_pipeline, cache
)
out = tts(
tts_pipeline.synthesizer,
text,
language_name="en",
speaker=None,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
speed=speed,
# file_path="out.wav",
)
return (22050, np.array(out)), dict(text=text, voice=voice)