chore: Update TTS dependencies and remove unused imports
Browse files- kitt/core/__init__.py +7 -4
- kitt/core/model.py +18 -9
- kitt/core/tts.py +10 -7
- kitt/core/utils.py +8 -10
- kitt/skills/poi.py +6 -5
- kitt/skills/routing.py +22 -5
- kitt/skills/weather.py +1 -1
- main.py +129 -47
kitt/core/__init__.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import os
|
2 |
-
from collections import namedtuple
|
3 |
-
import time
|
4 |
import pathlib
|
|
|
|
|
5 |
from typing import List
|
6 |
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
-
|
10 |
|
11 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
12 |
|
@@ -18,7 +18,10 @@ file_full_path = pathlib.Path(os.path.realpath(__file__)).parent
|
|
18 |
|
19 |
voices = [
|
20 |
Voice(
|
21 |
-
"Fast",
|
|
|
|
|
|
|
22 |
),
|
23 |
Voice(
|
24 |
"Attenborough",
|
|
|
1 |
import os
|
|
|
|
|
2 |
import pathlib
|
3 |
+
import time
|
4 |
+
from collections import namedtuple
|
5 |
from typing import List
|
6 |
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
+
from TTS.api import TTS
|
10 |
|
11 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
12 |
|
|
|
18 |
|
19 |
voices = [
|
20 |
Voice(
|
21 |
+
"Fast",
|
22 |
+
neutral="empty",
|
23 |
+
angry=None,
|
24 |
+
speed=1.0,
|
25 |
),
|
26 |
Voice(
|
27 |
"Attenborough",
|
kitt/core/model.py
CHANGED
@@ -2,20 +2,21 @@ import ast
|
|
2 |
import json
|
3 |
import re
|
4 |
import uuid
|
|
|
5 |
from enum import Enum
|
6 |
from typing import List
|
7 |
-
import xml.etree.ElementTree as ET
|
8 |
|
9 |
from langchain.memory import ChatMessageHistory
|
10 |
-
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
|
11 |
-
from langchain_core.utils.function_calling import convert_to_openai_tool
|
12 |
from langchain.tools.base import StructuredTool
|
|
|
|
|
|
|
13 |
from ollama import Client
|
14 |
from pydantic import BaseModel
|
15 |
-
from loguru import logger
|
16 |
|
17 |
from kitt.skills import vehicle_status
|
18 |
from kitt.skills.common import config
|
|
|
19 |
from .validator import validate_function_call_schema
|
20 |
|
21 |
|
@@ -83,8 +84,9 @@ Once you have called a function, results will be fed back to you within <tool_re
|
|
83 |
Don't make assumptions about tool results if <tool_response> XML tags are not present since function hasn't been executed yet.
|
84 |
Analyze the data once you get the results and call another function.
|
85 |
At each iteration please continue adding the your analysis to previous summary.
|
86 |
-
Your final response should directly answer the user query. Don't tell what you are doing, just do it.
|
87 |
-
Keep your responses very concise and to the point. Don't provide any unnecessary information.
|
|
|
88 |
|
89 |
|
90 |
Tools:
|
@@ -131,6 +133,16 @@ Assistant:
|
|
131 |
{{"arguments": {{"destination": "Paris"}}, "name": "set_vehicle_destination"}}
|
132 |
</tool_call>
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
Instructions:
|
136 |
At the very first turn you don't have <tool_results> so you shouldn't not make up the results.
|
@@ -228,9 +240,6 @@ def get_prompt(template, history, tools, schema, user_preferences, car_status=No
|
|
228 |
return prompt
|
229 |
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
def run_inference_ollama(prompt):
|
235 |
data = {
|
236 |
"prompt": prompt,
|
|
|
2 |
import json
|
3 |
import re
|
4 |
import uuid
|
5 |
+
import xml.etree.ElementTree as ET
|
6 |
from enum import Enum
|
7 |
from typing import List
|
|
|
8 |
|
9 |
from langchain.memory import ChatMessageHistory
|
|
|
|
|
10 |
from langchain.tools.base import StructuredTool
|
11 |
+
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
|
12 |
+
from langchain_core.utils.function_calling import convert_to_openai_tool
|
13 |
+
from loguru import logger
|
14 |
from ollama import Client
|
15 |
from pydantic import BaseModel
|
|
|
16 |
|
17 |
from kitt.skills import vehicle_status
|
18 |
from kitt.skills.common import config
|
19 |
+
|
20 |
from .validator import validate_function_call_schema
|
21 |
|
22 |
|
|
|
84 |
Don't make assumptions about tool results if <tool_response> XML tags are not present since function hasn't been executed yet.
|
85 |
Analyze the data once you get the results and call another function.
|
86 |
At each iteration please continue adding the your analysis to previous summary.
|
87 |
+
Your final response should directly answer the user query. Don't tell what you are doing, just do it. Do your best to keep your responses to about 1 line. Avoid asking follow up questions as much as possible.
|
88 |
+
Keep your responses very concise and to the point. Don't provide any unnecessary information. Do not offer to help with anything other than the user query.
|
89 |
+
Don't refer to user preferences as <user_preferences>.
|
90 |
|
91 |
|
92 |
Tools:
|
|
|
133 |
{{"arguments": {{"destination": "Paris"}}, "name": "set_vehicle_destination"}}
|
134 |
</tool_call>
|
135 |
|
136 |
+
Example 5:
|
137 |
+
User: Which place is warmer and by how much, dubai or tokyo?
|
138 |
+
Assistant:
|
139 |
+
<tool_call>
|
140 |
+
{{"arguments": {{"location": "Tokyo"}}, "name": "get_weather"}}
|
141 |
+
</tool_call>
|
142 |
+
<tool_call>
|
143 |
+
{{"arguments": {{"location": "Dubai"}}, "name": "get_weather"}}
|
144 |
+
</tool_call>
|
145 |
+
|
146 |
|
147 |
Instructions:
|
148 |
At the very first turn you don't have <tool_results> so you shouldn't not make up the results.
|
|
|
240 |
return prompt
|
241 |
|
242 |
|
|
|
|
|
|
|
243 |
def run_inference_ollama(prompt):
|
244 |
data = {
|
245 |
"prompt": prompt,
|
kitt/core/tts.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
from collections import namedtuple
|
2 |
-
from replicate import Client
|
3 |
-
from loguru import logger
|
4 |
-
from kitt.skills.common import config
|
5 |
-
import torch
|
6 |
|
7 |
-
from parler_tts import ParlerTTSForConditionalGeneration
|
8 |
-
from transformers import AutoTokenizer
|
9 |
import soundfile as sf
|
|
|
|
|
10 |
from melo.api import TTS as MeloTTS
|
|
|
|
|
|
|
11 |
|
|
|
12 |
|
13 |
replicate = Client(api_token=config.REPLICATE_API_KEY)
|
14 |
|
@@ -16,7 +16,10 @@ Voice = namedtuple("voice", ["name", "neutral", "angry", "speed"])
|
|
16 |
|
17 |
voices_replicate = [
|
18 |
Voice(
|
19 |
-
"Fast",
|
|
|
|
|
|
|
20 |
),
|
21 |
Voice(
|
22 |
"Attenborough",
|
|
|
1 |
from collections import namedtuple
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
3 |
import soundfile as sf
|
4 |
+
import torch
|
5 |
+
from loguru import logger
|
6 |
from melo.api import TTS as MeloTTS
|
7 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
8 |
+
from replicate import Client
|
9 |
+
from transformers import AutoTokenizer
|
10 |
|
11 |
+
from kitt.skills.common import config
|
12 |
|
13 |
replicate = Client(api_token=config.REPLICATE_API_KEY)
|
14 |
|
|
|
16 |
|
17 |
voices_replicate = [
|
18 |
Voice(
|
19 |
+
"Fast",
|
20 |
+
neutral="empty",
|
21 |
+
angry=None,
|
22 |
+
speed=1.0,
|
23 |
),
|
24 |
Voice(
|
25 |
"Attenborough",
|
kitt/core/utils.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import json
|
2 |
import re
|
3 |
-
from typing import List,
|
4 |
|
5 |
|
6 |
def plot_route(points, vehicle: Union[tuple[float, float], None] = None):
|
7 |
import plotly.express as px
|
8 |
-
|
9 |
lats = []
|
10 |
lons = []
|
11 |
|
@@ -15,9 +15,7 @@ def plot_route(points, vehicle: Union[tuple[float, float], None] = None):
|
|
15 |
# fig = px.line_geo(lat=lats, lon=lons)
|
16 |
# fig.update_geos(fitbounds="locations")
|
17 |
|
18 |
-
fig = px.line_mapbox(
|
19 |
-
lat=lats, lon=lons, zoom=12, height=600, color_discrete_sequence=["red"]
|
20 |
-
)
|
21 |
|
22 |
if vehicle:
|
23 |
fig.add_trace(
|
@@ -33,21 +31,21 @@ def plot_route(points, vehicle: Union[tuple[float, float], None] = None):
|
|
33 |
# mapbox_zoom=12,
|
34 |
)
|
35 |
fig.update_geos(fitbounds="locations")
|
36 |
-
fig.update_layout(margin={"r": 20, "t": 20, "l": 20, "b": 20})
|
37 |
return fig
|
38 |
|
39 |
|
40 |
def extract_json_from_markdown(text):
|
41 |
"""
|
42 |
Extracts the JSON string from the given text using a regular expression pattern.
|
43 |
-
|
44 |
Args:
|
45 |
text (str): The input text containing the JSON string.
|
46 |
-
|
47 |
Returns:
|
48 |
dict: The JSON data loaded from the extracted string, or None if the JSON string is not found.
|
49 |
"""
|
50 |
-
json_pattern = r
|
51 |
match = re.search(json_pattern, text, re.DOTALL)
|
52 |
if match:
|
53 |
json_string = match.group(1)
|
@@ -58,4 +56,4 @@ def extract_json_from_markdown(text):
|
|
58 |
print(f"Error decoding JSON string: {e}")
|
59 |
else:
|
60 |
print("JSON string not found in the text.")
|
61 |
-
return None
|
|
|
1 |
import json
|
2 |
import re
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
|
5 |
|
6 |
def plot_route(points, vehicle: Union[tuple[float, float], None] = None):
|
7 |
import plotly.express as px
|
8 |
+
|
9 |
lats = []
|
10 |
lons = []
|
11 |
|
|
|
15 |
# fig = px.line_geo(lat=lats, lon=lons)
|
16 |
# fig.update_geos(fitbounds="locations")
|
17 |
|
18 |
+
fig = px.line_mapbox(lat=lats, lon=lons, color_discrete_sequence=["red"])
|
|
|
|
|
19 |
|
20 |
if vehicle:
|
21 |
fig.add_trace(
|
|
|
31 |
# mapbox_zoom=12,
|
32 |
)
|
33 |
fig.update_geos(fitbounds="locations")
|
34 |
+
fig.update_layout(height=600, margin={"r": 20, "t": 20, "l": 20, "b": 20})
|
35 |
return fig
|
36 |
|
37 |
|
38 |
def extract_json_from_markdown(text):
|
39 |
"""
|
40 |
Extracts the JSON string from the given text using a regular expression pattern.
|
41 |
+
|
42 |
Args:
|
43 |
text (str): The input text containing the JSON string.
|
44 |
+
|
45 |
Returns:
|
46 |
dict: The JSON data loaded from the extracted string, or None if the JSON string is not found.
|
47 |
"""
|
48 |
+
json_pattern = r"```json\r?\n(.*?)\r?\n```"
|
49 |
match = re.search(json_pattern, text, re.DOTALL)
|
50 |
if match:
|
51 |
json_string = match.group(1)
|
|
|
56 |
print(f"Error decoding JSON string: {e}")
|
57 |
else:
|
58 |
print("JSON string not found in the text.")
|
59 |
+
return None
|
kitt/skills/poi.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import json
|
2 |
import urllib.parse
|
|
|
3 |
import requests
|
4 |
-
from loguru import logger
|
5 |
from langchain.tools import tool
|
|
|
|
|
6 |
from .common import config, vehicle
|
7 |
|
8 |
|
@@ -20,7 +22,7 @@ def _select_equally_spaced_coordinates(coords, number_of_points=10):
|
|
20 |
|
21 |
|
22 |
@tool
|
23 |
-
def search_points_of_interest(search_query: str ="french restaurant"):
|
24 |
"""
|
25 |
Get some of the closest points of interest matching the query.
|
26 |
|
@@ -47,7 +49,7 @@ def search_points_of_interest(search_query: str ="french restaurant"):
|
|
47 |
"lon": lon,
|
48 |
"radius": 5000,
|
49 |
"idxSet": "POI",
|
50 |
-
"limit": 50
|
51 |
}
|
52 |
|
53 |
r = requests.get(url, params=params, timeout=5)
|
@@ -76,7 +78,7 @@ def search_points_of_interest(search_query: str ="french restaurant"):
|
|
76 |
output = (
|
77 |
f"There are {len(results)} options in the vicinity. The most relevant are: "
|
78 |
)
|
79 |
-
return output + ".\n ".join(formatted_results), results[:3]
|
80 |
|
81 |
|
82 |
def find_points_of_interest(lat="0", lon="0", type_of_poi="restaurant"):
|
@@ -96,7 +98,6 @@ def find_points_of_interest(lat="0", lon="0", type_of_poi="restaurant"):
|
|
96 |
|
97 |
r = requests.get(url, timeout=5)
|
98 |
|
99 |
-
|
100 |
# Parse JSON from the response
|
101 |
data = r.json()
|
102 |
# print(data)
|
|
|
1 |
import json
|
2 |
import urllib.parse
|
3 |
+
|
4 |
import requests
|
|
|
5 |
from langchain.tools import tool
|
6 |
+
from loguru import logger
|
7 |
+
|
8 |
from .common import config, vehicle
|
9 |
|
10 |
|
|
|
22 |
|
23 |
|
24 |
@tool
|
25 |
+
def search_points_of_interest(search_query: str = "french restaurant"):
|
26 |
"""
|
27 |
Get some of the closest points of interest matching the query.
|
28 |
|
|
|
49 |
"lon": lon,
|
50 |
"radius": 5000,
|
51 |
"idxSet": "POI",
|
52 |
+
"limit": 50,
|
53 |
}
|
54 |
|
55 |
r = requests.get(url, params=params, timeout=5)
|
|
|
78 |
output = (
|
79 |
f"There are {len(results)} options in the vicinity. The most relevant are: "
|
80 |
)
|
81 |
+
return output + ".\n ".join(formatted_results), [x["poi"] for x in results[:3]]
|
82 |
|
83 |
|
84 |
def find_points_of_interest(lat="0", lon="0", type_of_poi="restaurant"):
|
|
|
98 |
|
99 |
r = requests.get(url, timeout=5)
|
100 |
|
|
|
101 |
# Parse JSON from the response
|
102 |
data = r.json()
|
103 |
# print(data)
|
kitt/skills/routing.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
from datetime import datetime
|
|
|
2 |
import requests
|
3 |
-
from loguru import logger
|
4 |
from langchain.tools import tool
|
|
|
|
|
5 |
from .common import config, vehicle
|
6 |
|
7 |
|
@@ -12,13 +14,29 @@ def find_coordinates(address):
|
|
12 |
"""
|
13 |
# https://developer.tomtom.com/geocoding-api/documentation/geocode
|
14 |
url = f"https://api.tomtom.com/search/2/geocode/{address}.json?key={config.TOMTOM_API_KEY}"
|
15 |
-
response = requests.get(url)
|
16 |
data = response.json()
|
17 |
lat = data["results"][0]["position"]["lat"]
|
18 |
lon = data["results"][0]["position"]["lon"]
|
19 |
return lat, lon
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def calculate_route(origin, destination):
|
23 |
"""This function is called when the origin or destination is updated in the GUI. It calculates the route between the origin and destination."""
|
24 |
print(f"calculate_route(origin: {origin}, destination: {destination})")
|
@@ -37,7 +55,7 @@ def calculate_route(origin, destination):
|
|
37 |
# destination = "49.586745,6.140002"
|
38 |
|
39 |
url = f"https://api.tomtom.com/routing/1/calculateRoute/{orig_coords_str}:{dest_coords_str}/json?key={config.TOMTOM_API_KEY}"
|
40 |
-
response = requests.get(url)
|
41 |
data = response.json()
|
42 |
points = data["routes"][0]["legs"][0]["points"]
|
43 |
|
@@ -150,7 +168,6 @@ def find_route(destination):
|
|
150 |
)
|
151 |
return _format_tomtom_trip_info(trip_info, destination)
|
152 |
|
153 |
-
|
154 |
# raw_response["routes"][0]["legs"][0]["points"]
|
155 |
|
156 |
|
@@ -178,4 +195,4 @@ def _format_tomtom_trip_info(trip_info, destination="destination"):
|
|
178 |
arrival_hour_display = arrival_time.strftime("%H:%M")
|
179 |
|
180 |
# return the distance and time
|
181 |
-
return f"The route to {destination} is {distance_km:.2f} km which takes {time_display}. Leaving now, the arrival time is estimated at {arrival_hour_display}."
|
|
|
1 |
from datetime import datetime
|
2 |
+
|
3 |
import requests
|
|
|
4 |
from langchain.tools import tool
|
5 |
+
from loguru import logger
|
6 |
+
|
7 |
from .common import config, vehicle
|
8 |
|
9 |
|
|
|
14 |
"""
|
15 |
# https://developer.tomtom.com/geocoding-api/documentation/geocode
|
16 |
url = f"https://api.tomtom.com/search/2/geocode/{address}.json?key={config.TOMTOM_API_KEY}"
|
17 |
+
response = requests.get(url, timeout=5)
|
18 |
data = response.json()
|
19 |
lat = data["results"][0]["position"]["lat"]
|
20 |
lon = data["results"][0]["position"]["lon"]
|
21 |
return lat, lon
|
22 |
|
23 |
|
24 |
+
def find_address(lat, lon):
|
25 |
+
"""
|
26 |
+
Find the address of a specific location.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
lat (string): Required. The latitude
|
30 |
+
lon (string): Required. The longitude
|
31 |
+
"""
|
32 |
+
# https://developer.tomtom.com/search-api/documentation/reverse-geocoding
|
33 |
+
url = f"https://api.tomtom.com/search/2/reverseGeocode/{lat},{lon}.json?key={config.TOMTOM_API_KEY}"
|
34 |
+
response = requests.get(url, timeout=5)
|
35 |
+
data = response.json()
|
36 |
+
address = data["addresses"][0]["address"]["freeformAddress"]
|
37 |
+
return address
|
38 |
+
|
39 |
+
|
40 |
def calculate_route(origin, destination):
|
41 |
"""This function is called when the origin or destination is updated in the GUI. It calculates the route between the origin and destination."""
|
42 |
print(f"calculate_route(origin: {origin}, destination: {destination})")
|
|
|
55 |
# destination = "49.586745,6.140002"
|
56 |
|
57 |
url = f"https://api.tomtom.com/routing/1/calculateRoute/{orig_coords_str}:{dest_coords_str}/json?key={config.TOMTOM_API_KEY}"
|
58 |
+
response = requests.get(url, timeout=5)
|
59 |
data = response.json()
|
60 |
points = data["routes"][0]["legs"][0]["points"]
|
61 |
|
|
|
168 |
)
|
169 |
return _format_tomtom_trip_info(trip_info, destination)
|
170 |
|
|
|
171 |
# raw_response["routes"][0]["legs"][0]["points"]
|
172 |
|
173 |
|
|
|
195 |
arrival_hour_display = arrival_time.strftime("%H:%M")
|
196 |
|
197 |
# return the distance and time
|
198 |
+
return f"The route to {destination} is {distance_km:.2f} km which takes {time_display}. Leaving now, the arrival time is estimated at {arrival_hour_display}."
|
kitt/skills/weather.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import requests
|
2 |
-
from loguru import logger
|
3 |
from langchain.tools import tool
|
|
|
4 |
|
5 |
from .common import config, vehicle
|
6 |
|
|
|
1 |
import requests
|
|
|
2 |
from langchain.tools import tool
|
3 |
+
from loguru import logger
|
4 |
|
5 |
from .common import config, vehicle
|
6 |
|
main.py
CHANGED
@@ -1,49 +1,65 @@
|
|
1 |
import time
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
|
|
4 |
import torch
|
5 |
import torchaudio
|
6 |
-
from transformers import pipeline
|
7 |
import typer
|
8 |
-
|
9 |
-
from kitt.skills.common import config, vehicle
|
10 |
-
from kitt.skills.routing import calculate_route
|
11 |
-
from kitt.core.tts import run_tts_replicate, run_tts_fast, run_melo_tts
|
12 |
-
import ollama
|
13 |
-
|
14 |
-
from langchain.tools.base import StructuredTool
|
15 |
from langchain.memory import ChatMessageHistory
|
16 |
-
from langchain_core.utils.function_calling import convert_to_openai_tool
|
17 |
from langchain.tools import tool
|
|
|
|
|
18 |
from loguru import logger
|
|
|
19 |
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
21 |
from kitt.skills import (
|
22 |
-
|
|
|
|
|
|
|
23 |
find_route,
|
24 |
get_forecast,
|
25 |
-
|
26 |
-
|
27 |
-
search_points_of_interest,
|
28 |
search_along_route_w_coordinates,
|
|
|
29 |
set_vehicle_destination,
|
30 |
-
|
31 |
-
date_time_info,
|
32 |
-
get_weather_current_location,
|
33 |
-
code_interpreter,
|
34 |
)
|
35 |
-
from kitt.skills import
|
36 |
-
from kitt.
|
37 |
-
|
38 |
-
# from kitt.core.model import process_query
|
39 |
-
from kitt.core.model import generate_function_call as process_query
|
40 |
-
from kitt.core import utils as kitt_utils
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
global_context = {
|
44 |
"vehicle": vehicle,
|
45 |
"query": "How is the weather?",
|
46 |
"route_points": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
}
|
48 |
|
49 |
speaker_embedding_cache = {}
|
@@ -72,8 +88,6 @@ Answer questions concisely and do not mention what you base your reply on.<|im_e
|
|
72 |
<|im_start|>assistant
|
73 |
"""
|
74 |
|
75 |
-
USER_PREFERENCES = "I love italian food\nI like doing sports"
|
76 |
-
|
77 |
|
78 |
def get_prompt(template, input, history, tools):
|
79 |
# "vehicle_status": vehicle_status_fn()[0]
|
@@ -221,7 +235,7 @@ def run_llama3_model(query, voice_character, state):
|
|
221 |
if state["tts_enabled"]:
|
222 |
# voice_out = run_tts_replicate(output_text, voice_character)
|
223 |
# voice_out = run_tts_fast(output_text)[0]
|
224 |
-
voice_out = run_melo_tts(output_text, voice_character)
|
225 |
# voice_out = tts_gradio(output_text, voice_character, speaker_embedding_cache)[0]
|
226 |
return (
|
227 |
output_text,
|
@@ -245,33 +259,47 @@ def run_model(query, voice_character, state):
|
|
245 |
|
246 |
if not state["enable_history"]:
|
247 |
history.clear()
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
|
251 |
def calculate_route_gradio(origin, destination):
|
252 |
vehicle_status, points = calculate_route(origin, destination)
|
253 |
plot = kitt_utils.plot_route(points, vehicle=vehicle.location_coordinates)
|
254 |
global_context["route_points"] = points
|
|
|
255 |
vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
|
256 |
return plot, vehicle_status, 0
|
257 |
|
258 |
|
259 |
-
def update_vehicle_status(trip_progress, origin, destination):
|
260 |
if not global_context["route_points"]:
|
261 |
vehicle_status, points = calculate_route(origin, destination)
|
262 |
global_context["route_points"] = points
|
|
|
|
|
263 |
n_points = len(global_context["route_points"])
|
264 |
index = min(int(trip_progress / 100 * n_points), n_points - 1)
|
265 |
-
|
266 |
new_coords = global_context["route_points"][index]
|
267 |
new_coords = new_coords["latitude"], new_coords["longitude"]
|
268 |
-
|
|
|
|
|
269 |
vehicle.location_coordinates = new_coords
|
270 |
-
|
|
|
271 |
plot = kitt_utils.plot_route(
|
272 |
global_context["route_points"], vehicle=vehicle.location_coordinates
|
273 |
)
|
274 |
-
return vehicle.model_dump_json(), plot
|
275 |
|
276 |
|
277 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -314,8 +342,10 @@ def save_and_transcribe_audio(audio):
|
|
314 |
|
315 |
def save_and_transcribe_run_model(audio, voice_character, state):
|
316 |
text = save_and_transcribe_audio(audio)
|
317 |
-
out_text, out_voice, vehicle_status = run_model(
|
318 |
-
|
|
|
|
|
319 |
|
320 |
|
321 |
def set_tts_enabled(tts_enabled, state):
|
@@ -324,6 +354,7 @@ def set_tts_enabled(tts_enabled, state):
|
|
324 |
f"TTS enabled was {state['tts_enabled']} and changed to {new_tts_enabled}"
|
325 |
)
|
326 |
state["tts_enabled"] = new_tts_enabled
|
|
|
327 |
return state
|
328 |
|
329 |
|
@@ -333,6 +364,7 @@ def set_llm_backend(llm_backend, state):
|
|
333 |
f"LLM backend was {state['llm_backend']} and changed to {new_llm_backend}"
|
334 |
)
|
335 |
state["llm_backend"] = new_llm_backend
|
|
|
336 |
return state
|
337 |
|
338 |
|
@@ -340,6 +372,7 @@ def set_user_preferences(preferences, state):
|
|
340 |
new_preferences = preferences
|
341 |
logger.info(f"User preferences changed to: {new_preferences}")
|
342 |
state["user_preferences"] = new_preferences
|
|
|
343 |
return state
|
344 |
|
345 |
|
@@ -349,9 +382,40 @@ def set_enable_history(enable_history, state):
|
|
349 |
f"Enable history was {state['enable_history']} and changed to {new_enable_history}"
|
350 |
)
|
351 |
state["enable_history"] = new_enable_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
return state
|
353 |
|
354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
|
356 |
# in "Insecure origins treated as secure", enable it and relaunch chrome
|
357 |
|
@@ -360,13 +424,6 @@ def set_enable_history(enable_history, state):
|
|
360 |
# What's the closest restaurant from here?
|
361 |
|
362 |
|
363 |
-
ORIGIN = "Mondorf-les-Bains, Luxembourg"
|
364 |
-
DESTINATION = "Rue Alphonse Weicker, Luxembourg"
|
365 |
-
DEFAULT_LLM_BACKEND = "ollama"
|
366 |
-
ENABLE_HISTORY = True
|
367 |
-
ENABLE_TTS = True
|
368 |
-
|
369 |
-
|
370 |
def create_demo(tts_server: bool = False, model="llama3"):
|
371 |
print(f"Running the demo with model: {model} and TTSServer: {tts_server}")
|
372 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
@@ -380,10 +437,13 @@ def create_demo(tts_server: bool = False, model="llama3"):
|
|
380 |
"llm_backend": DEFAULT_LLM_BACKEND,
|
381 |
"user_preferences": USER_PREFERENCES,
|
382 |
"enable_history": ENABLE_HISTORY,
|
|
|
|
|
383 |
}
|
384 |
)
|
385 |
-
|
386 |
plot, vehicle_status, _ = calculate_route_gradio(ORIGIN, DESTINATION)
|
|
|
387 |
|
388 |
with gr.Row():
|
389 |
with gr.Column(scale=1, min_width=300):
|
@@ -452,6 +512,10 @@ def create_demo(tts_server: bool = False, model="llama3"):
|
|
452 |
label="Input text",
|
453 |
interactive=True,
|
454 |
)
|
|
|
|
|
|
|
|
|
455 |
vehicle_status = gr.JSON(
|
456 |
value=vehicle.model_dump_json(), label="Vehicle status"
|
457 |
)
|
@@ -462,6 +526,12 @@ def create_demo(tts_server: bool = False, model="llama3"):
|
|
462 |
value="Yes" if ENABLE_TTS else "No",
|
463 |
interactive=True,
|
464 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
llm_backend = gr.Radio(
|
466 |
choices=["Ollama", "Replicate"],
|
467 |
label="LLM Backend",
|
@@ -505,26 +575,34 @@ def create_demo(tts_server: bool = False, model="llama3"):
|
|
505 |
input_text.submit(
|
506 |
fn=run_model,
|
507 |
inputs=[input_text, voice_character, state],
|
508 |
-
outputs=[output_text, output_audio, vehicle_status],
|
509 |
)
|
510 |
input_text_debug.submit(
|
511 |
fn=run_model,
|
512 |
inputs=[input_text_debug, voice_character, state],
|
513 |
-
outputs=[output_text, output_audio, vehicle_status],
|
514 |
)
|
515 |
|
516 |
# Set the vehicle status based on the trip progress
|
517 |
trip_progress.release(
|
518 |
fn=update_vehicle_status,
|
519 |
-
inputs=[trip_progress, origin, destination],
|
520 |
-
outputs=[vehicle_status, map_plot],
|
521 |
)
|
522 |
|
523 |
# Save and transcribe the audio
|
524 |
input_audio.stop_recording(
|
525 |
fn=save_and_transcribe_run_model,
|
526 |
inputs=[input_audio, voice_character, state],
|
527 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
)
|
529 |
input_audio_debug.stop_recording(
|
530 |
fn=save_and_transcribe_audio,
|
@@ -539,12 +617,16 @@ def create_demo(tts_server: bool = False, model="llama3"):
|
|
539 |
tts_enabled.change(
|
540 |
fn=set_tts_enabled, inputs=[tts_enabled, state], outputs=[state]
|
541 |
)
|
|
|
|
|
|
|
542 |
llm_backend.change(
|
543 |
fn=set_llm_backend, inputs=[llm_backend, state], outputs=[state]
|
544 |
)
|
545 |
enable_history.change(
|
546 |
fn=set_enable_history, inputs=[enable_history, state], outputs=[state]
|
547 |
)
|
|
|
548 |
|
549 |
return demo
|
550 |
|
|
|
1 |
import time
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
import ollama
|
6 |
import torch
|
7 |
import torchaudio
|
|
|
8 |
import typer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from langchain.memory import ChatMessageHistory
|
|
|
10 |
from langchain.tools import tool
|
11 |
+
from langchain.tools.base import StructuredTool
|
12 |
+
from langchain_core.utils.function_calling import convert_to_openai_tool
|
13 |
from loguru import logger
|
14 |
+
from transformers import pipeline
|
15 |
|
16 |
+
from kitt.core import tts_gradio
|
17 |
+
from kitt.core import utils as kitt_utils
|
18 |
+
from kitt.core import voice_options
|
19 |
|
20 |
+
# from kitt.core.model import process_query
|
21 |
+
from kitt.core.model import generate_function_call as process_query
|
22 |
+
from kitt.core.tts import run_melo_tts, run_tts_fast, run_tts_replicate
|
23 |
from kitt.skills import (
|
24 |
+
code_interpreter,
|
25 |
+
date_time_info,
|
26 |
+
do_anything_else,
|
27 |
+
extract_func_args,
|
28 |
find_route,
|
29 |
get_forecast,
|
30 |
+
get_weather,
|
31 |
+
get_weather_current_location,
|
|
|
32 |
search_along_route_w_coordinates,
|
33 |
+
search_points_of_interest,
|
34 |
set_vehicle_destination,
|
35 |
+
set_vehicle_speed,
|
|
|
|
|
|
|
36 |
)
|
37 |
+
from kitt.skills import vehicle_status as vehicle_status_fn
|
38 |
+
from kitt.skills.common import config, vehicle
|
39 |
+
from kitt.skills.routing import calculate_route, find_address
|
|
|
|
|
|
|
40 |
|
41 |
+
ORIGIN = "Mondorf-les-Bains, Luxembourg"
|
42 |
+
DESTINATION = "Rue Alphonse Weicker, Luxembourg"
|
43 |
+
DEFAULT_LLM_BACKEND = "ollama"
|
44 |
+
ENABLE_HISTORY = True
|
45 |
+
ENABLE_TTS = True
|
46 |
+
TTS_BACKEND = "local"
|
47 |
+
USER_PREFERENCES = "User loves italian food."
|
48 |
|
49 |
global_context = {
|
50 |
"vehicle": vehicle,
|
51 |
"query": "How is the weather?",
|
52 |
"route_points": [],
|
53 |
+
"origin": ORIGIN,
|
54 |
+
"destination": DESTINATION,
|
55 |
+
"enable_history": ENABLE_HISTORY,
|
56 |
+
"tts_enabled": ENABLE_TTS,
|
57 |
+
"tts_backend": TTS_BACKEND,
|
58 |
+
"llm_backend": DEFAULT_LLM_BACKEND,
|
59 |
+
"map_origin": ORIGIN,
|
60 |
+
"map_destination": DESTINATION,
|
61 |
+
"update_proxy": 0,
|
62 |
+
"map": None,
|
63 |
}
|
64 |
|
65 |
speaker_embedding_cache = {}
|
|
|
88 |
<|im_start|>assistant
|
89 |
"""
|
90 |
|
|
|
|
|
91 |
|
92 |
def get_prompt(template, input, history, tools):
|
93 |
# "vehicle_status": vehicle_status_fn()[0]
|
|
|
235 |
if state["tts_enabled"]:
|
236 |
# voice_out = run_tts_replicate(output_text, voice_character)
|
237 |
# voice_out = run_tts_fast(output_text)[0]
|
238 |
+
voice_out = run_melo_tts(output_text, voice_character)
|
239 |
# voice_out = tts_gradio(output_text, voice_character, speaker_embedding_cache)[0]
|
240 |
return (
|
241 |
output_text,
|
|
|
259 |
|
260 |
if not state["enable_history"]:
|
261 |
history.clear()
|
262 |
+
global_context["update_proxy"] += 1
|
263 |
+
|
264 |
+
return (
|
265 |
+
text,
|
266 |
+
voice,
|
267 |
+
vehicle.model_dump_json(),
|
268 |
+
state,
|
269 |
+
dict(update_proxy=global_context["update_proxy"]),
|
270 |
+
)
|
271 |
|
272 |
|
273 |
def calculate_route_gradio(origin, destination):
|
274 |
vehicle_status, points = calculate_route(origin, destination)
|
275 |
plot = kitt_utils.plot_route(points, vehicle=vehicle.location_coordinates)
|
276 |
global_context["route_points"] = points
|
277 |
+
# state.value["route_points"] = points
|
278 |
vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
|
279 |
return plot, vehicle_status, 0
|
280 |
|
281 |
|
282 |
+
def update_vehicle_status(trip_progress, origin, destination, state):
|
283 |
if not global_context["route_points"]:
|
284 |
vehicle_status, points = calculate_route(origin, destination)
|
285 |
global_context["route_points"] = points
|
286 |
+
global_context["destination"] = destination
|
287 |
+
global_context["route_points"] = global_context["route_points"]
|
288 |
n_points = len(global_context["route_points"])
|
289 |
index = min(int(trip_progress / 100 * n_points), n_points - 1)
|
290 |
+
logger.info(f"Trip progress: {trip_progress} len: {n_points}, index: {index}")
|
291 |
new_coords = global_context["route_points"][index]
|
292 |
new_coords = new_coords["latitude"], new_coords["longitude"]
|
293 |
+
logger.info(
|
294 |
+
f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}"
|
295 |
+
)
|
296 |
vehicle.location_coordinates = new_coords
|
297 |
+
new_vehicle_location = find_address(new_coords[0], new_coords[1])
|
298 |
+
vehicle.location = new_vehicle_location
|
299 |
plot = kitt_utils.plot_route(
|
300 |
global_context["route_points"], vehicle=vehicle.location_coordinates
|
301 |
)
|
302 |
+
return vehicle.model_dump_json(), plot, state
|
303 |
|
304 |
|
305 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
342 |
|
343 |
def save_and_transcribe_run_model(audio, voice_character, state):
|
344 |
text = save_and_transcribe_audio(audio)
|
345 |
+
out_text, out_voice, vehicle_status, state, update_proxy = run_model(
|
346 |
+
text, voice_character, state
|
347 |
+
)
|
348 |
+
return None, text, out_text, out_voice, vehicle_status, state, update_proxy
|
349 |
|
350 |
|
351 |
def set_tts_enabled(tts_enabled, state):
|
|
|
354 |
f"TTS enabled was {state['tts_enabled']} and changed to {new_tts_enabled}"
|
355 |
)
|
356 |
state["tts_enabled"] = new_tts_enabled
|
357 |
+
global_context["tts_enabled"] = new_tts_enabled
|
358 |
return state
|
359 |
|
360 |
|
|
|
364 |
f"LLM backend was {state['llm_backend']} and changed to {new_llm_backend}"
|
365 |
)
|
366 |
state["llm_backend"] = new_llm_backend
|
367 |
+
global_context["llm_backend"] = new_llm_backend
|
368 |
return state
|
369 |
|
370 |
|
|
|
372 |
new_preferences = preferences
|
373 |
logger.info(f"User preferences changed to: {new_preferences}")
|
374 |
state["user_preferences"] = new_preferences
|
375 |
+
global_context["user_preferences"] = new_preferences
|
376 |
return state
|
377 |
|
378 |
|
|
|
382 |
f"Enable history was {state['enable_history']} and changed to {new_enable_history}"
|
383 |
)
|
384 |
state["enable_history"] = new_enable_history
|
385 |
+
global_context["enable_history"] = new_enable_history
|
386 |
+
return state
|
387 |
+
|
388 |
+
|
389 |
+
def set_tts_backend(tts_backend, state):
|
390 |
+
new_tts_backend = tts_backend.lower()
|
391 |
+
logger.info(
|
392 |
+
f"TTS backend was {state['tts_backend']} and changed to {new_tts_backend}"
|
393 |
+
)
|
394 |
+
state["tts_backend"] = new_tts_backend
|
395 |
+
global_context["tts_backend"] = new_tts_backend
|
396 |
return state
|
397 |
|
398 |
|
399 |
+
def conditional_update():
|
400 |
+
if global_context["destination"] != vehicle.destination:
|
401 |
+
global_context["destination"] = vehicle.destination
|
402 |
+
|
403 |
+
if global_context["origin"] != vehicle.location:
|
404 |
+
global_context["origin"] = vehicle.location
|
405 |
+
|
406 |
+
if (
|
407 |
+
global_context["map_origin"] != vehicle.location
|
408 |
+
or global_context["map_destination"] != vehicle.destination
|
409 |
+
or global_context["update_proxy"] == 0
|
410 |
+
):
|
411 |
+
logger.info(f"Updating the map plot... in conditional_update")
|
412 |
+
map_plot, vehicle_status, _ = calculate_route_gradio(
|
413 |
+
vehicle.location, vehicle.destination
|
414 |
+
)
|
415 |
+
global_context["map"] = map_plot
|
416 |
+
return global_context["map"]
|
417 |
+
|
418 |
+
|
419 |
# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
|
420 |
# in "Insecure origins treated as secure", enable it and relaunch chrome
|
421 |
|
|
|
424 |
# What's the closest restaurant from here?
|
425 |
|
426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
def create_demo(tts_server: bool = False, model="llama3"):
|
428 |
print(f"Running the demo with model: {model} and TTSServer: {tts_server}")
|
429 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
|
437 |
"llm_backend": DEFAULT_LLM_BACKEND,
|
438 |
"user_preferences": USER_PREFERENCES,
|
439 |
"enable_history": ENABLE_HISTORY,
|
440 |
+
"tts_backend": TTS_BACKEND,
|
441 |
+
"destination": DESTINATION,
|
442 |
}
|
443 |
)
|
444 |
+
|
445 |
plot, vehicle_status, _ = calculate_route_gradio(ORIGIN, DESTINATION)
|
446 |
+
global_context["map"] = plot
|
447 |
|
448 |
with gr.Row():
|
449 |
with gr.Column(scale=1, min_width=300):
|
|
|
512 |
label="Input text",
|
513 |
interactive=True,
|
514 |
)
|
515 |
+
update_proxy = gr.JSON(
|
516 |
+
value=dict(update_proxy=0),
|
517 |
+
label="Global context",
|
518 |
+
)
|
519 |
vehicle_status = gr.JSON(
|
520 |
value=vehicle.model_dump_json(), label="Vehicle status"
|
521 |
)
|
|
|
526 |
value="Yes" if ENABLE_TTS else "No",
|
527 |
interactive=True,
|
528 |
)
|
529 |
+
tts_backend = gr.Radio(
|
530 |
+
["Local", "Replicate"],
|
531 |
+
label="TTS Backend",
|
532 |
+
value=TTS_BACKEND.title(),
|
533 |
+
interactive=True,
|
534 |
+
)
|
535 |
llm_backend = gr.Radio(
|
536 |
choices=["Ollama", "Replicate"],
|
537 |
label="LLM Backend",
|
|
|
575 |
input_text.submit(
|
576 |
fn=run_model,
|
577 |
inputs=[input_text, voice_character, state],
|
578 |
+
outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
|
579 |
)
|
580 |
input_text_debug.submit(
|
581 |
fn=run_model,
|
582 |
inputs=[input_text_debug, voice_character, state],
|
583 |
+
outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
|
584 |
)
|
585 |
|
586 |
# Set the vehicle status based on the trip progress
|
587 |
trip_progress.release(
|
588 |
fn=update_vehicle_status,
|
589 |
+
inputs=[trip_progress, origin, destination, state],
|
590 |
+
outputs=[vehicle_status, map_plot, state],
|
591 |
)
|
592 |
|
593 |
# Save and transcribe the audio
|
594 |
input_audio.stop_recording(
|
595 |
fn=save_and_transcribe_run_model,
|
596 |
inputs=[input_audio, voice_character, state],
|
597 |
+
outputs=[
|
598 |
+
input_audio,
|
599 |
+
input_text,
|
600 |
+
output_text,
|
601 |
+
output_audio,
|
602 |
+
vehicle_status,
|
603 |
+
state,
|
604 |
+
update_proxy,
|
605 |
+
],
|
606 |
)
|
607 |
input_audio_debug.stop_recording(
|
608 |
fn=save_and_transcribe_audio,
|
|
|
617 |
tts_enabled.change(
|
618 |
fn=set_tts_enabled, inputs=[tts_enabled, state], outputs=[state]
|
619 |
)
|
620 |
+
tts_backend.change(
|
621 |
+
fn=set_tts_backend, inputs=[tts_backend, state], outputs=[state]
|
622 |
+
)
|
623 |
llm_backend.change(
|
624 |
fn=set_llm_backend, inputs=[llm_backend, state], outputs=[state]
|
625 |
)
|
626 |
enable_history.change(
|
627 |
fn=set_enable_history, inputs=[enable_history, state], outputs=[state]
|
628 |
)
|
629 |
+
update_proxy.change(fn=conditional_update, inputs=[], outputs=[map_plot])
|
630 |
|
631 |
return demo
|
632 |
|