{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Text to Speech Playground"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import os\n",
"\n",
"import torch\n",
"import gradio as gr\n",
"from TTS.api import TTS\n",
"os.environ[\"COQUI_TOS_AGREED\"] = \"1\"\n",
"# os.environ[\"PYTORCH_ENABLE_MPS_FALLBACK\"] = \"1\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from collections import namedtuple\n",
"\n",
"Voice = namedtuple('voice', ['name', 'neutral','angry'])\n"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"voices = [\n",
" Voice('Attenborough', neutral='audio/attenborough/neutral.wav', angry=None),\n",
" Voice('Rick', neutral='audio/rick/neutral.wav', angry=None),\n",
" Voice('Freeman', neutral='audio/freeman/neutral.wav', angry='audio/freeman/angry.wav'),\n",
" Voice('Walken', neutral='audio/walken/neutral.wav', angry=None),\n",
" Voice('Darth Wader', neutral='audio/darth/neutral.wav', angry=None),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[voice(name='Attenborough', neutral='audio/attenborough/neutral.mp3', angry=None),\n",
" voice(name='Rick', neutral='audio/rick/neutral.mp3', angry=None),\n",
" voice(name='Freeman', neutral='audio/freeman/neutral.mp3', angry='audio/freeman/angry.mp3'),\n",
" voice(name='Walken', neutral='audio/walken/neutral.mp3', angry=None),\n",
" voice(name='Darth Wader', neutral='audio/darth/neutral.mp3', angry=None)]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"voices"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > tts_models/multilingual/multi-dataset/xtts_v2 is already downloaded.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n",
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n",
" _torch_pytree._register_pytree_node(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Using model: xtts\n"
]
}
],
"source": [
"#load model for text to speech\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"# device = \"mps\"\n",
"tts_pipelins = TTS(\"tts_models/multilingual/multi-dataset/xtts_v2\").to(device)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import IPython\n"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"speaker_embedding_cache = {}"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"def compute_speaker_embedding(voice_path: str, config, pipeline, cache):\n",
" if voice_path not in cache:\n",
" cache[voice_path] = pipeline.synthesizer.tts_model.get_conditioning_latents(\n",
" audio_path=voice_path,\n",
" gpt_cond_len=config.gpt_cond_len,\n",
" gpt_cond_chunk_len=config.gpt_cond_chunk_len,\n",
" max_ref_length=config.max_ref_len,\n",
" sound_norm_refs=config.sound_norm_refs,\n",
" )\n",
" return cache[voice_path]"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
"out = compute_speaker_embedding(voices[0].neutral, tts_pipelins.synthesizer.tts_config, tts_pipelins, speaker_embedding_cache)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Text splitted to sentences.\n",
"['Hey Petra, so you are hungry?', 'and you like me to prepare some strawberries for you?', 'do you like strawberries?']\n",
" > Processing time: 15.77448582649231\n",
" > Real-time factor: 1.7459813091024587\n"
]
}
],
"source": [
"out = tts_pipelins.tts(\n",
" \"Hello, I am Rick, pickle rick, you took a wrong turn and now you're stuck in a parallel universe\",\n",
" speaker_wav=\"audio/freeman/neutral.wav\",\n",
" language=\"en\",\n",
" # file_path=\"out.wav\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"ref_audio_path = \"audio/freeman/neutral.wav\""
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"config.max_ref_len = 360"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"config = tts_pipelins.synthesizer.tts_config\n",
"(gpt_cond_latent, speaker_embedding) = tts_pipelins.synthesizer.tts_model.get_conditioning_latents(\n",
" audio_path=ref_audio_path,\n",
" gpt_cond_len=config.gpt_cond_len,\n",
" gpt_cond_chunk_len=config.gpt_cond_chunk_len,\n",
" max_ref_length=config.max_ref_len,\n",
" sound_norm_refs=config.sound_norm_refs,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [],
"source": [
"(gpt_cond_latent, speaker_embedding) = compute_speaker_embedding(voices[0].neutral, tts_pipelins.synthesizer.tts_config, tts_pipelins, speaker_embedding_cache)"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(205872,)"
]
},
"execution_count": 116,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.array(out)"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"205872"
]
},
"execution_count": 110,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(out)"
]
},
{
"cell_type": "code",
"execution_count": 128,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Text splitted to sentences.\n",
"['Something is up!']\n",
" > Processing time: 2.9515581130981445\n",
" > Real-time factor: 1.588292083019672\n"
]
}
],
"source": [
"out = tts(\n",
" tts_pipelins.synthesizer,\n",
" \"Something is up!\",\n",
" # speaker_wav=ref_audio_path,\n",
" language_name=\"en\",\n",
" speaker=None,\n",
" gpt_cond_latent=gpt_cond_latent,\n",
" speaker_embedding=speaker_embedding,\n",
" speed=1.1,\n",
" # file_path=\"out.wav\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"execution_count": 129,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"IPython.display.Audio(out, rate=22050)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input\n",
<<<<<<< Updated upstream
"\n",
=======
"# use_gl = self.vocoder_model is None\n",
>>>>>>> Stashed changes
"def tts(\n",
" self,\n",
" text: str = \"\",\n",
" language_name: str = \"\",\n",
" reference_wav=None,\n",
" gpt_cond_latent=None,\n",
" speaker_embedding=None,\n",
" split_sentences: bool = True,\n",
" **kwargs,\n",
") -> List[int]:\n",
" \"\"\"🐸 TTS magic. Run all the models and generate speech.\n",
"\n",
" Args:\n",
" text (str): input text.\n",
" speaker_name (str, optional): speaker id for multi-speaker models. Defaults to \"\".\n",
" language_name (str, optional): language id for multi-language models. Defaults to \"\".\n",
" speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None.\n",
" style_wav ([type], optional): style waveform for GST. Defaults to None.\n",
" style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None.\n",
" reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None.\n",
" reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None.\n",
" split_sentences (bool, optional): split the input text into sentences. Defaults to True.\n",
" **kwargs: additional arguments to pass to the TTS model.\n",
" Returns:\n",
" List[int]: [description]\n",
" \"\"\"\n",
" start_time = time.time()\n",
" wavs = []\n",
"\n",
" if not text and not reference_wav:\n",
" raise ValueError(\n",
" \"You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API.\"\n",
" )\n",
"\n",
" if text:\n",
" sens = [text]\n",
" if split_sentences:\n",
" print(\" > Text splitted to sentences.\")\n",
" sens = self.split_into_sentences(text)\n",
" print(sens)\n",
"\n",
" if not reference_wav: # not voice conversion\n",
" for sen in sens:\n",
" outputs = self.tts_model.inference(\n",
" sen,\n",
" language_name,\n",
" gpt_cond_latent,\n",
" speaker_embedding,\n",
" # GPT inference\n",
" temperature=0.75,\n",
" length_penalty=1.0,\n",
" repetition_penalty=10.0,\n",
" top_k=50,\n",
" top_p=0.85,\n",
" do_sample=True,\n",
" **kwargs,\n",
" )\n",
" waveform = outputs[\"wav\"]\n",
" if torch.is_tensor(waveform) and waveform.device != torch.device(\"cpu\") and not use_gl:\n",
" waveform = waveform.cpu()\n",
" if not use_gl:\n",
" waveform = waveform.numpy()\n",
" waveform = waveform.squeeze()\n",
"\n",
" # trim silence\n",
" if \"do_trim_silence\" in self.tts_config.audio and self.tts_config.audio[\"do_trim_silence\"]:\n",
" waveform = trim_silence(waveform, self.tts_model.ap)\n",
"\n",
" wavs += list(waveform)\n",
" wavs += [0] * 10000\n",
"\n",
"\n",
" # compute stats\n",
" process_time = time.time() - start_time\n",
" audio_time = len(wavs) / self.tts_config.audio[\"sample_rate\"]\n",
" print(f\" > Processing time: {process_time}\")\n",
" print(f\" > Real-time factor: {process_time / audio_time}\")\n",
" return wavs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"type(tts_pipelins)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"IPython.display.Audio(out, rate=22050)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def text_to_speech(voice, tts):\n",
" return voice.neutral"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
" tts.tts_to_file(text= str(quest_processing[0]),\n",
" file_path=\"output.wav\",\n",
" speaker_wav=f'Audio_Files/{voice}.wav',\n",
" language=quest_processing[3],\n",
" emotion = \"angry\")\n",
"\n",
" audio_path = \"output.wav\"\n",
" return audio_path, state['context'], state"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"voice_options = []\n",
"for voice in voices:\n",
" if voice.neutral:\n",
" voice_options.append(f\"{voice.name} - Neutral\")\n",
" if voice.angry:\n",
" voice_options.append(f\"{voice.name} - Angry\")"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [],
"source": [
"def voice_from_text(voice):\n",
" for v in voices:\n",
" if voice == f\"{v.name} - Neutral\":\n",
" return v.neutral\n",
" if voice == f\"{v.name} - Angry\":\n",
" return v.angry"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [],
"source": [
"def tts_gradio(text, voice, state):\n",
" print(text, voice, state)\n",
" voice_path = voice_from_text(voice)\n",
" (gpt_cond_latent, speaker_embedding) = compute_speaker_embedding(voice_path, tts_pipelins.synthesizer.tts_config, tts_pipelins, speaker_embedding_cache)\n",
" out = tts(\n",
" tts_pipelins.synthesizer,\n",
" text,\n",
" language_name=\"en\",\n",
" speaker=None,\n",
" gpt_cond_latent=gpt_cond_latent,\n",
" speaker_embedding=speaker_embedding,\n",
" speed=1.1,\n",
" # file_path=\"out.wav\",\n",
" )\n",
" return (22050, np.array(out)), dict(text=text, voice=voice)"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['audio/attenborough/neutral.wav'])"
]
},
"execution_count": 122,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"speaker_embedding_cache.keys()"
]
},
{
"cell_type": "code",
"execution_count": 127,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This is going to be fun, let's enjoy ourselves\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Closing server running on port: 7860\n",
"Running on local URL: http://0.0.0.0:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"This is going to be fun, let's enjoy ourselves Darth Wader - Neutral None\n",
" > Text splitted to sentences.\n",
"[\"This is going to be fun, let's enjoy ourselves\"]\n",
" > Processing time: 9.152068138122559\n",
" > Real-time factor: 1.8119083325456329\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/gradio/processing_utils.py:390: UserWarning: Trying to convert audio automatically from float64 to 16-bit int format.\n",
" warnings.warn(warning.format(data.dtype))\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"This is going to be fun, let's enjoy ourselves Darth Wader - Neutral {'text': \"This is going to be fun, let's enjoy ourselves\", 'voice': 'Darth Wader - Neutral'}\n",
" > Text splitted to sentences.\n",
"[\"This is going to be fun, let's enjoy ourselves\"]\n",
" > Processing time: 7.824646234512329\n",
" > Real-time factor: 1.8261372721316347\n",
"Keyboard interruption in main thread... closing server.\n"
]
},
{
"data": {
"text/plain": []
},
"execution_count": 127,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#INTERFACE WITH AUDIO TO AUDIO\n",
"\n",
"#to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/ \n",
"#in \"Insecure origins treated as secure\", enable it and relaunch chrome\n",
"\n",
"\n",
"model_answer= ''\n",
"general_context= \"This is going to be fun, let's enjoy ourselves\"\n",
"# Define the initial state with some initial context.\n",
"print(general_context)\n",
"initial_state = {'context': general_context}\n",
"initial_context= initial_state['context']\n",
"# Create the Gradio interface.\n",
"iface = gr.Interface(\n",
" fn=tts_gradio,\n",
" inputs=[\n",
" gr.Textbox(value=initial_context, visible=True, label='Enter the text to be converted to speech', placeholder=\"This is going to be fun, let's enjoy ourselves\", lines=5),\n",
" gr.Radio(choices=voice_options, label='Choose a voice', value=voice_options[0], show_label=True), # Radio button for voice selection\n",
" gr.State() # This will keep track of the context state across interactions.\n",
" ],\n",
" outputs=[\n",
" gr.Audio(label = 'output audio', autoplay=True),\n",
" gr.State()\n",
" ],\n",
" flagging_options=['👎', '👍'],\n",
")\n",
"#close all interfaces open to make the port available\n",
"gr.close_all()\n",
"# Launch the interface.\n",
"iface.launch(debug=True, share=False, server_name=\"0.0.0.0\", server_port=7860, ssl_verify=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}