import uuid
import json
import re
from loguru import logger
def use_tool(tool_call, tools):
func_name = tool_call["name"]
kwargs = tool_call["arguments"]
for tool in tools:
if tool.name == func_name:
return tool.invoke(input=kwargs)
raise ValueError(f"Tool {func_name} not found.")
def parse_tool_calls(text):
logger.debug(f"Start parsing tool_calls: {text}")
pattern = r"\s*(\{.*?\})\s*"
if not text.startswith(""):
if "" in text:
raise ValueError("")
if "" in text:
raise ValueError("")
return [], []
matches = re.findall(pattern, text, re.DOTALL)
tool_calls = []
errors = []
for match in matches:
try:
tool_call = json.loads(match)
tool_calls.append(tool_call)
except json.JSONDecodeError as e:
errors.append(f"Invalid JSON in tool call: {e}")
logger.debug(f"Tool calls: {tool_calls}, errors: {errors}")
return tool_calls, errors
def process_response(user_query, res, history, tools, depth):
"""Returns True if the response contains tool calls, False otherwise."""
logger.debug(f"Processing response: {res}")
tool_results = f"Agent iteration {depth} to assist with user query: {user_query}\n"
tool_call_id = uuid.uuid4().hex
try:
tool_calls, errors = parse_tool_calls(res)
except ValueError as e:
if "" in str(e):
tool_results += "If you need to call a tool your response must be wrapped in . Try again, you are great."
history.add_message(
ToolMessage(content=tool_results, tool_call_id=tool_call_id)
)
return True, [], []
if "" in str(e):
tool_results += "Tool results are not allowed in the response."
history.add_message(
ToolMessage(content=tool_results, tool_call_id=tool_call_id)
)
return True, [], []
# TODO: Handle errors
if not tool_calls:
logger.debug("No tool calls found in response.")
return False, tool_calls, errors
# tool_results = ""
for tool_call in tool_calls:
# TODO: Extra Validation
# Call the function
try:
result = use_tool(tool_call, tools)
logger.debug(f"Tool call {tool_call} result: {result}")
if isinstance(result, tuple):
result = result[1]
tool_results += f"\n{result}\n\n"
except Exception as e:
logger.error(f"Error calling tool: {e}")
# Currently only to mimic OpneAI's behavior
# But it could be used for tracking function calls
tool_results = tool_results.strip()
print(f"Tool results: {tool_results}")
history.add_message(ToolMessage(content=tool_results, tool_call_id=tool_call_id))
return True, tool_calls, errors
def process_query(
user_query: str,
history: ChatMessageHistory,
user_preferences,
tools,
backend="ollama",
):
# Add vehicle status to the history
user_query_status = f"consider the vehicle status:\n{vehicle_status()[0]}\nwhen responding to the following query:\n{user_query}"
history.add_message(HumanMessage(content=user_query_status))
for depth in range(10):
# out = run_inference_step(depth, history, tools, schema_json)
out = run_inference_step(
depth,
history,
tools,
schema_json,
user_preferences=user_preferences,
backend=backend,
)
logger.info(f"Inference step result:\n{out}")
history.add_message(AIMessage(content=out))
to_continue, tool_calls, errors = process_response(
user_query, out, history, tools, depth
)
if errors:
history.add_message(AIMessage(content=f"Errors in tool calls: {errors}"))
if not to_continue:
print(f"This is the answer, no more iterations: {out}")
return out
# Otherwise, tools result is already added to history, we just need to continue the loop.
# If we get here something went wrong.
history.add_message(
AIMessage(content="Sorry, I am not sure how to help you with that.")
)
return "Sorry, I am not sure how to help you with that."