sasha HF staff commited on
Commit
8cd56a3
·
1 Parent(s): 92f6957

adding new plots

Browse files
Files changed (1) hide show
  1. app.py +89 -4
app.py CHANGED
@@ -5,6 +5,27 @@ import plotly.express as px
5
  import numpy as np
6
 
7
  datadir = 'data/emissions/complete'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  model_param_df = pd.read_csv('data/model_parameters.csv', header=0)
10
  model_performance_df = pd.read_csv('data/performance.csv', header=0)
@@ -12,17 +33,36 @@ emissions_df = pd.read_csv('data/co2_data.csv',header=0)
12
  modalities_df = pd.read_csv('data/modalities_data.csv',header=0)
13
  finetuned_df = emissions_df[~emissions_df['task'].str.contains('zero')]
14
  finetuned_df['task'] = finetuned_df['task'].str.replace('_',' ')
15
-
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  fig0 = px.scatter(emissions_df, x="num_params", y="query emissions (g)", color="model", log_x=True, log_y=True)
17
  fig0.update_layout(xaxis={'categoryorder':'mean ascending'})
18
  fig0.update_layout(yaxis_title='Total carbon emitted (g)')
19
  fig0.update_layout(xaxis_title='Number of Parameters')
20
 
21
 
22
- fig1 = px.box(finetuned_df, x="task", y="query_energy (kWh)", color="task", log_y=True)
23
  fig1.update_layout(xaxis={'categoryorder':'mean ascending'})
24
  fig1.update_layout(yaxis_title='Total energy used (Wh)')
25
  fig1.update_layout(xaxis_title='Task')
 
 
 
 
 
 
26
 
27
  fig2 = px.scatter(modalities_df, x="num_params", y="query emissions (g)", color="modality",
28
  log_x=True, log_y=True, custom_data=['model','task'])
@@ -37,6 +77,32 @@ fig2.update_layout(xaxis_title='Model size (number of parameters)')
37
  fig2.update_layout(yaxis_title='Model emissions (g of CO<sub>2</sub>)')
38
 
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  demo = gr.Blocks()
41
 
42
  with demo:
@@ -64,16 +130,35 @@ with demo:
64
  gr.Markdown("Image generation is by far the most energy- and carbon-intensive task from the ones studied, and text classification \
65
  is the least.")
66
  gr.Plot(fig1)
 
67
  with gr.Column():
68
  gr.Markdown("## Modality comparison (carbon)")
69
  gr.Markdown("### Grouping the models by their modality shows different characteristics:")
70
  gr.Markdown("We can see that tasks involving images (image-to-text, image-to-category) require more energy and emit more carbon\
71
  than ones involving text.")
72
  gr.Plot(fig2)
 
 
 
73
 
 
 
 
 
 
74
 
75
-
76
-
 
 
 
 
 
 
 
 
 
 
77
 
78
 
79
  demo.launch()
 
5
  import numpy as np
6
 
7
  datadir = 'data/emissions/complete'
8
+ seq2seq_finetuned = ['sshleifer/distilbart-xsum-12-6', 'sshleifer/distilbart-cnn-12-6', 'sshleifer/distilbart-cnn-6-6',
9
+ 'pszemraj/led-large-book-summary', 'google/pegasus-xsum', 'google/pegasus-large',
10
+ 'google/pegasus-multi_news' ,'facebook/bart-large-cnn', 'ainize/bart-base-cnn']
11
+ color_discrete_map = {'Task-specific Encoder': '#636EFA', 'Multi-purpose Seq2Seq': '#AB63FA', 'Multi-purpose Decoder': '#00CC96', 'Task-specific Seq2Seq':'#EF553B'}
12
+
13
+ def multi_check(mname):
14
+ if 'flan' in mname:
15
+ return 'Seq2Seq'
16
+ elif 'bloomz' in mname:
17
+ return 'Decoder'
18
+
19
+ def encoder_check(mname):
20
+ if 'flan' in mname:
21
+ return 'Multi-purpose Seq2Seq'
22
+ elif mname in seq2seq_finetuned:
23
+ return 'Task-specific Seq2Seq'
24
+ elif 'bloomz' in mname:
25
+ return 'Multi-purpose Decoder'
26
+ else:
27
+ return 'Task-specific Encoder'
28
+ # Data loading
29
 
30
  model_param_df = pd.read_csv('data/model_parameters.csv', header=0)
31
  model_performance_df = pd.read_csv('data/performance.csv', header=0)
 
33
  modalities_df = pd.read_csv('data/modalities_data.csv',header=0)
34
  finetuned_df = emissions_df[~emissions_df['task'].str.contains('zero')]
35
  finetuned_df['task'] = finetuned_df['task'].str.replace('_',' ')
36
+ zeroshot_df = emissions_df[emissions_df['task'].str.contains('zero')]
37
+ zeroshot_df['task'] = zeroshot_df['task'].str.replace('_',' ')
38
+ zeroshot_df['architecture_type'] = zeroshot_df.apply(lambda x : multi_check(x.model),axis=1)
39
+ grouped_df = emissions_df.groupby(['model','task']).mean()
40
+ grouped_df = grouped_df.reset_index()
41
+ grouped_df = grouped_df.drop('task',axis=1)
42
+ performance_all = pd.merge(grouped_df, model_performance_df, on='model')
43
+ performance_all['type']= performance_all.apply(lambda x : encoder_check(x.model),axis=1)
44
+ performance_all['log_emissions'] = np.log1p(performance_all["query emissions (g)"])
45
+ sent_df = performance_all[['imdb (acc)','sst2 (acc)','tomatoes (acc)', "query emissions (g)", 'model','type','num_params', 'log_emissions']][performance_all['task'].isin(['sentiment'])]
46
+ qa_df = performance_all[['sciq (acc)', 'squad (f1)', 'squad_v2 (f1, has answer)', "query emissions (g)", 'model','type','num_params', 'log_emissions']][performance_all['task'].isin(['qa'])]
47
+ summ_df = performance_all[['samsum (rouge)', 'xsum (rouge)', 'cnn (rouge)', "query emissions (g)", 'model','type', 'num_params','log_emissions']][performance_all['task'].isin(['summarization'])]
48
+
49
+ # Figure loading
50
  fig0 = px.scatter(emissions_df, x="num_params", y="query emissions (g)", color="model", log_x=True, log_y=True)
51
  fig0.update_layout(xaxis={'categoryorder':'mean ascending'})
52
  fig0.update_layout(yaxis_title='Total carbon emitted (g)')
53
  fig0.update_layout(xaxis_title='Number of Parameters')
54
 
55
 
56
+ fig1 = px.scatter(finetuned_df, x="task", y="query_energy (kWh)", color="model", log_y=True)
57
  fig1.update_layout(xaxis={'categoryorder':'mean ascending'})
58
  fig1.update_layout(yaxis_title='Total energy used (Wh)')
59
  fig1.update_layout(xaxis_title='Task')
60
+ fig1.update_traces(
61
+ hovertemplate="<br>".join([
62
+ "Model: %{customdata[0]}",
63
+ "Task: %{customdata[1]}",
64
+ ])
65
+ )
66
 
67
  fig2 = px.scatter(modalities_df, x="num_params", y="query emissions (g)", color="modality",
68
  log_x=True, log_y=True, custom_data=['model','task'])
 
77
  fig2.update_layout(yaxis_title='Model emissions (g of CO<sub>2</sub>)')
78
 
79
 
80
+ fig3 = px.scatter(zeroshot_df, x="model", y="query emissions (g)", color="architecture_type", size='num_params', log_y=True)
81
+ fig3.update_layout(xaxis={'categoryorder':'mean ascending'})
82
+ fig3.update_layout(yaxis_title='Model emissions (g of CO<sub>2</sub>)')
83
+ fig3.update_layout(xaxis_title='Model')
84
+
85
+ fig4 = px.scatter(zeroshot_df, x="dataset", y="query emissions (g)", color="model", size='num_params', log_y=True)
86
+ fig4.update_layout(xaxis={'categoryorder':'mean ascending'})
87
+ fig4.update_layout(yaxis_title='Model emissions (g of CO<sub>2</sub>)')
88
+ fig4.update_layout(xaxis_title='Model')
89
+
90
+ fig5 = px.scatter(sent_df, y=['imdb (acc)', 'sst2 (acc)', 'tomatoes (acc)'], x="num_params", color="type", color_discrete_map=color_discrete_map,
91
+ size= "log_emissions", log_x=True, hover_data="model")
92
+ fig5.update_layout(legend=dict(y=-0.4,x=0.3))
93
+ fig5.update_layout(yaxis_title='Text Classification Accuracy')
94
+
95
+ fig6 = px.scatter(qa_df, y=['sciq (acc)', 'squad (f1)', 'squad_v2 (f1, has answer)'], x="num_params", color="type",
96
+ size = 'log_emissions', log_x=True, hover_data="model")
97
+ fig6.update_layout(legend=dict(y=-0.4,x=0.3))
98
+ fig6.update_layout(yaxis_title='QA accuracy/F1')
99
+
100
+ fig7 = px.scatter(summ_df, y=['samsum (rouge)', 'xsum (rouge)', 'cnn (rouge)'], x="num_params", color="type",
101
+ size = 'log_emissions', log_x=True, hover_data="model")
102
+ fig7.update_layout(legend=dict(y=-0.4,x=0.3))
103
+ fig7.update_layout(yaxis_title='Summarization Rouge Score')
104
+
105
+
106
  demo = gr.Blocks()
107
 
108
  with demo:
 
130
  gr.Markdown("Image generation is by far the most energy- and carbon-intensive task from the ones studied, and text classification \
131
  is the least.")
132
  gr.Plot(fig1)
133
+ with gr.Row():
134
  with gr.Column():
135
  gr.Markdown("## Modality comparison (carbon)")
136
  gr.Markdown("### Grouping the models by their modality shows different characteristics:")
137
  gr.Markdown("We can see that tasks involving images (image-to-text, image-to-category) require more energy and emit more carbon\
138
  than ones involving text.")
139
  gr.Plot(fig2)
140
+ gr.Markdown("## Multi-task model comparison (carbon)")
141
+ gr.Markdown("### Looking at the emissions of multi-task models, we can see that decoder-only models tend to emit more carbon compared to sequence-to-sequence ones.")
142
+ gr.Markdown("### This pattern varies depending on the dataset and task - for summarization datasets (the 3 rightmost ones), the difference between models is less obvious.")
143
 
144
+ with gr.Row():
145
+ with gr.Column():
146
+ gr.Plot(fig3)
147
+ with gr.Column():
148
+ gr.Plot(fig4)
149
 
150
+ gr.Markdown("## Evaluations (accuracy vs carbon)")
151
+ gr.Markdown("### Single-task models are, ceteris paribus, less carbon-intensive than multi-task models for all 3 tasks we looked at: ")
152
+ with gr.Row():
153
+ with gr.Column():
154
+ gr.Markdown("### Sentiment Analysis")
155
+ gr.Plot(fig5)
156
+ with gr.Column():
157
+ gr.Markdown("### Question Answering")
158
+ gr.Plot(fig6)
159
+ with gr.Column():
160
+ gr.Markdown("### Summarization")
161
+ gr.Plot(fig7)
162
 
163
 
164
  demo.launch()