Spaces:
Runtime error
Runtime error
Upload prompt.py
Browse files
prompt.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForMaskedLM , AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class Prompting(object):
|
5 |
+
""" doc string
|
6 |
+
This class helps us to implement
|
7 |
+
Prompt-based Learning Model
|
8 |
+
"""
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
""" constructor
|
11 |
+
|
12 |
+
parameter:
|
13 |
+
----------
|
14 |
+
model: AutoModelForMaskedLM
|
15 |
+
path to a Pre-trained language model form HuggingFace Hub
|
16 |
+
tokenizer: AutoTokenizer
|
17 |
+
path to tokenizer if different tokenizer is used,
|
18 |
+
otherwise leave it empty
|
19 |
+
"""
|
20 |
+
model_path=kwargs['model']
|
21 |
+
tokenizer_path= kwargs['model']
|
22 |
+
if "tokenizer" in kwargs.keys():
|
23 |
+
tokenizer_path= kwargs['tokenizer']
|
24 |
+
self.model = AutoModelForMaskedLM.from_pretrained(model_path)
|
25 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
26 |
+
|
27 |
+
def prompt_pred(self,text):
|
28 |
+
"""
|
29 |
+
Predict MASK token by listing the probability of candidate tokens
|
30 |
+
where the first token is the most likely
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
----------
|
34 |
+
text: str
|
35 |
+
The text including [MASK] token.
|
36 |
+
It supports single MASK token. If more [MASK]ed tokens
|
37 |
+
are given, it takes the first one.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
--------
|
41 |
+
list of (token, prob)
|
42 |
+
The return is a list of all token in LM Vocab along with
|
43 |
+
their prob score, sort by score in descending order
|
44 |
+
"""
|
45 |
+
indexed_tokens=self.tokenizer(text, return_tensors="pt").input_ids
|
46 |
+
tokenized_text= self.tokenizer.convert_ids_to_tokens (indexed_tokens[0])
|
47 |
+
# take the first masked token
|
48 |
+
mask_pos=tokenized_text.index(self.tokenizer.mask_token)
|
49 |
+
self.model.eval()
|
50 |
+
with torch.no_grad():
|
51 |
+
outputs = self.model(indexed_tokens)
|
52 |
+
predictions = outputs[0]
|
53 |
+
values, indices=torch.sort(predictions[0, mask_pos], descending=True)
|
54 |
+
#values=torch.nn.functional.softmax(values, dim=0)
|
55 |
+
result=list(zip(self.tokenizer.convert_ids_to_tokens(indices), values))
|
56 |
+
self.scores_dict={a:b for a,b in result}
|
57 |
+
return result
|
58 |
+
|
59 |
+
def compute_tokens_prob(self, text, token_list1, token_list2):
|
60 |
+
"""
|
61 |
+
Compute the activations for given two token list,
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
---------
|
65 |
+
token_list1: List(str)
|
66 |
+
it is a list for positive polarity tokens such as good, great.
|
67 |
+
token_list2: List(str)
|
68 |
+
it is a list for negative polarity tokens such as bad, terrible.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
--------
|
72 |
+
Tuple (
|
73 |
+
the probability for first token list,
|
74 |
+
the probability of the second token list,
|
75 |
+
the ratio score1/ (score1+score2)
|
76 |
+
The softmax returns
|
77 |
+
"""
|
78 |
+
_=self.prompt_pred(text)
|
79 |
+
score1=[self.scores_dict[token1] if token1 in self.scores_dict.keys() else 0\
|
80 |
+
for token1 in token_list1]
|
81 |
+
score1= sum(score1)
|
82 |
+
score2=[self.scores_dict[token2] if token2 in self.scores_dict.keys() else 0\
|
83 |
+
for token2 in token_list2]
|
84 |
+
score2= sum(score2)
|
85 |
+
softmax_rt=torch.nn.functional.softmax(torch.Tensor([score1,score2]), dim=0)
|
86 |
+
return softmax_rt
|
87 |
+
|
88 |
+
def fine_tune(self, sentences, labels, prompt=" Since it was [MASK].",goodToken="good",badToken="bad"):
|
89 |
+
"""
|
90 |
+
Fine tune the model
|
91 |
+
"""
|
92 |
+
good=tokenizer.convert_tokens_to_ids(goodToken)
|
93 |
+
bad=tokenizer.convert_tokens_to_ids(badToken)
|
94 |
+
|
95 |
+
from transformers import AdamW
|
96 |
+
optimizer = AdamW(self.model.parameters(),lr=1e-3)
|
97 |
+
|
98 |
+
for sen, label in zip(sentences, labels):
|
99 |
+
tokenized_text = self.tokenizer.tokenize(sen+prompt)
|
100 |
+
indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokenized_text)
|
101 |
+
tokens_tensor = torch.tensor([indexed_tokens])
|
102 |
+
# take the first masked token
|
103 |
+
mask_pos=tokenized_text.index(self.tokenizer.mask_token)
|
104 |
+
outputs = self.model(tokens_tensor)
|
105 |
+
predictions = outputs[0]
|
106 |
+
pred=predictions[0, mask_pos][[good,bad]]
|
107 |
+
prob=torch.nn.functional.softmax(pred, dim=0)
|
108 |
+
lossFunc = torch.nn.CrossEntropyLoss()
|
109 |
+
loss=lossFunc(prob.unsqueeze(0), torch.tensor([label]))
|
110 |
+
loss.backward()
|
111 |
+
optimizer.step()
|
112 |
+
print("done!")
|