savasy's picture
Create app.py
530d73e
raw
history blame
1.65 kB
import matplotlib.pyplot as plt
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
import tweepy
model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
def adjust(x):
if x<0:
return 2*x+1
return 2*x-1
def sa2(s):
res= sa(s)
return [adjust(-1*r['score']) if r['label']=='negative' else adjust(r['score']) for r in res ]
def get_examples():
#return [e for e in open("examplesTR.csv").readlines()]
return [["#demokrasi","100","","","",""]]
def grfunc(key, number_of_tweets,consumer_key, consumer_secret,acc_token,acc_secret):
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(acc_token, acc_secret)
api = tweepy.API(auth)
msgs = []
for tweet in tweepy.Cursor(api.search, q=key, lang='tr', rpp=100).items(50):
msgs.append(tweet.text)
c2=[s.strip() for s in msgs if len(s.split())>2]
df["scores"]= sa2(c2)
df.plot(kind='hist')
return plt.gcf()
import gradio as gr
iface = gr.Interface(
fn=grfunc,
inputs=[gr.inputs.Textbox(placeholder="put your #hashtag"),
gr.inputs.Textbox(placeholder="the number of tweets",default=100),
gr.inputs.Textbox(placeholder="consumer_key"),
gr.inputs.Textbox(placeholder="consumer_secret"),
gr.inputs.Textbox(placeholder="access_key"),
gr.inputs.Textbox(placeholder="access_secret")
],
outputs="plot",
examples=get_examples())
iface.launch()