Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install -q git+https://github.com/huggingface/transformers.git') | |
os.system('pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') | |
os.system('pip install fitz') | |
os.system('pip install PyMuPDF') | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
import gradio as gr | |
import re | |
import fitz | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large").to(device) | |
class GUI: | |
def preprocess(self,text): | |
text = text.replace('\n', ' ') | |
text = re.sub('\s+', ' ', text) | |
return text | |
def query_from_list(self,query, options, tok_len): | |
t5query = f"""Question: "{query}" Context: {options}""" | |
inputs = tokenizer(t5query, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_new_tokens=tok_len) | |
return tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
def begin(self,pdf,question,start_page=1, end_page=None): | |
doc = fitz.open(pdf) | |
total_pages = doc.page_count | |
if end_page is None: | |
end_page = total_pages | |
pdf_text = "" | |
for i in range(start_page-1, end_page): | |
text = doc.load_page(i).get_text("text") | |
text = app.preprocess(text) | |
pdf_text+=text | |
# Call the LLM with input data and instruction | |
input_data=pdf_text | |
results = app.query_from_list(question, input_data, 30) | |
return results | |
app = GUI() | |
title = "Get answers from your document with questions with Flan-T5" | |
description = "Results will show up in a few seconds." | |
article="<b>References</b><br>[1] FLAN-T5” <a href='https://huggingface.co/docs/transformers/model_doc/flan-t5'>Transformers Link</a><br>" | |
css = """.output_image, .input_image {height: 600px !important}""" | |
iface = gr.Interface(fn=app.begin, | |
inputs=[gr.File(label="PDF File",file_types=['.pdf']), gr.Textbox(label="Question") ], | |
outputs = gr.Text(label="Answer Summary"), | |
title=title, | |
description=description, | |
article=article, | |
css=css, | |
analytics_enabled = True, enable_queue=True) | |
iface.launch(inline=False, share=False, debug=False) |