Spaces:
Runtime error
Runtime error
Commit
·
87a496b
1
Parent(s):
925e388
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import re
|
5 |
+
import fitz
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
12 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large").to(device)
|
13 |
+
|
14 |
+
class GUI:
|
15 |
+
|
16 |
+
def preprocess(self,text):
|
17 |
+
text = text.replace('\n', ' ')
|
18 |
+
text = re.sub('\s+', ' ', text)
|
19 |
+
return text
|
20 |
+
|
21 |
+
def query_from_list(self,query, options, tok_len):
|
22 |
+
|
23 |
+
|
24 |
+
t5query = f"""Question: "{query}" Context: {options}"""
|
25 |
+
inputs = tokenizer(t5query, return_tensors="pt").to(device)
|
26 |
+
outputs = model.generate(**inputs, max_new_tokens=tok_len)
|
27 |
+
return tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def begin(self,pdf,question,start_page=1, end_page=None):
|
33 |
+
|
34 |
+
doc = fitz.open(pdf)
|
35 |
+
total_pages = doc.page_count
|
36 |
+
|
37 |
+
if end_page is None:
|
38 |
+
end_page = total_pages
|
39 |
+
|
40 |
+
pdf_text = ""
|
41 |
+
|
42 |
+
for i in range(start_page-1, end_page):
|
43 |
+
text = doc.load_page(i).get_text("text")
|
44 |
+
text = app.preprocess(text)
|
45 |
+
pdf_text+=text
|
46 |
+
# Call the LLM with input data and instruction
|
47 |
+
input_data=pdf_text
|
48 |
+
|
49 |
+
results = app.query_from_list(question, input_data, 30)
|
50 |
+
|
51 |
+
return results
|
52 |
+
|
53 |
+
app = GUI()
|
54 |
+
title = "Get answers from your document with questions with Flan-T5"
|
55 |
+
description = "Results will show up in a few seconds."
|
56 |
+
|
57 |
+
article="<b>References</b><br>[1] FLAN-T5” 2022. <a href='https://huggingface.co/docs/transformers/model_doc/flan-t5'>Transformers Link</a><br>"
|
58 |
+
|
59 |
+
|
60 |
+
css = """.output_image, .input_image {height: 600px !important}"""
|
61 |
+
|
62 |
+
iface = gr.Interface(fn=app.begin,
|
63 |
+
inputs=[gr.File(label="PDF File",file_types=['.pdf']), gr.Textbox(label="Question") ],
|
64 |
+
outputs = gr.Text(label="Answer Summary"),
|
65 |
+
title=title,
|
66 |
+
description=description,
|
67 |
+
article=article,
|
68 |
+
css=css,
|
69 |
+
analytics_enabled = True, enable_queue=True)
|
70 |
+
|
71 |
+
iface.launch(inline=False, share=False, debug=False)
|