Upload folder using huggingface_hub
Browse files- app.py +58 -0
- hue_loss.py +41 -0
- requirements.txt +6 -0
- sd.py +238 -0
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sd import stl_list, img_size_opt_dict, generate_images
|
3 |
+
|
4 |
+
with gr.Blocks() as demo:
|
5 |
+
gr.HTML("<h1 align = 'center'> Stable Diffusion - Text Inversion and additional guidence</h1>")
|
6 |
+
gr.HTML("<h4 align = 'center'> Generates imgaes based on the prompt and 5 different styles and then with additional guidence of hue loss</h4>")
|
7 |
+
gr.HTML("<h6 align = 'center'> !!The image generation may take 5 to 10 minutes on CPU!!</h4>")
|
8 |
+
|
9 |
+
with gr.Row():
|
10 |
+
content = gr.Textbox(label = "Enter prompt text here")
|
11 |
+
gr.Examples([
|
12 |
+
"A mouse",
|
13 |
+
"A puppy"
|
14 |
+
],
|
15 |
+
inputs = content)
|
16 |
+
num_steps = gr.Slider(1, 50, step = 1, value=30, label="Number of inference steps", info="Choose between 1 and 50")
|
17 |
+
# gr.Number(value = 10, label = "Number of inference steps")
|
18 |
+
|
19 |
+
|
20 |
+
with gr.Row():
|
21 |
+
stl_dropdown = gr.Dropdown(
|
22 |
+
stl_list,
|
23 |
+
value=stl_list[:1], multiselect=True, label="Style",
|
24 |
+
info="Styles to be applied on images"
|
25 |
+
)
|
26 |
+
size_dropdown = gr.Dropdown(
|
27 |
+
[*img_size_opt_dict],
|
28 |
+
value = [*img_size_opt_dict][-1],
|
29 |
+
label="Image size", info="Target size for generated images"
|
30 |
+
)
|
31 |
+
|
32 |
+
inputs = [
|
33 |
+
content,
|
34 |
+
num_steps,
|
35 |
+
stl_dropdown,
|
36 |
+
size_dropdown
|
37 |
+
]
|
38 |
+
|
39 |
+
generate_btn = gr.Button(value = 'Generate')
|
40 |
+
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column(scale=2):
|
43 |
+
wo_add_guide = gr.Gallery(
|
44 |
+
label="Without additional guidence", show_label=True, elem_id="gallery"
|
45 |
+
, columns=[3], rows=[2], object_fit="contain", height="auto")
|
46 |
+
|
47 |
+
with gr.Column(scale=2):
|
48 |
+
add_guide = gr.Gallery(
|
49 |
+
label="With hue loss guidence", show_label=True, elem_id="gallery"
|
50 |
+
, columns=[3], rows=[2], object_fit="contain", height="auto")
|
51 |
+
outputs = [wo_add_guide, add_guide ]
|
52 |
+
generate_btn.click(fn = generate_images, inputs= inputs, outputs = outputs)
|
53 |
+
|
54 |
+
# for collab
|
55 |
+
# demo.launch(debug=True)
|
56 |
+
|
57 |
+
if __name__ == '__main__':
|
58 |
+
demo.launch()
|
hue_loss.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
# hue loss
|
4 |
+
def rgb_to_hsv(image):
|
5 |
+
r, g, b = image[:, 0, :, :], image[:, 1, :, :], image[:, 2, :, :]
|
6 |
+
maxc = torch.max(image, dim=1)[0]
|
7 |
+
minc = torch.min(image, dim=1)[0]
|
8 |
+
|
9 |
+
v = maxc
|
10 |
+
s = (maxc - minc) / (maxc + 1e-10)
|
11 |
+
deltac = maxc - minc
|
12 |
+
|
13 |
+
# Initialize hue
|
14 |
+
h = torch.zeros_like(maxc)
|
15 |
+
|
16 |
+
mask = maxc == r
|
17 |
+
h[mask] = ((g - b) / deltac)[mask] % 6
|
18 |
+
|
19 |
+
mask = maxc == g
|
20 |
+
h[mask] = ((b - r) / deltac)[mask] + 2
|
21 |
+
|
22 |
+
mask = maxc == b
|
23 |
+
h[mask] = ((r - g) / deltac)[mask] + 4
|
24 |
+
|
25 |
+
h = h / 6 # Normalize to [0, 1]
|
26 |
+
h[deltac == 0] = 0 # If no color difference, set hue to 0
|
27 |
+
|
28 |
+
return torch.stack([h, s, v], dim=1)
|
29 |
+
|
30 |
+
|
31 |
+
def hue_loss(images, target_hue=0.5):
|
32 |
+
# Convert the images to HSV color space
|
33 |
+
hsv_images = rgb_to_hsv(images)
|
34 |
+
|
35 |
+
# Extract the hue channel
|
36 |
+
hue = hsv_images[:, 0, :, :]
|
37 |
+
|
38 |
+
# Calculate the error as the mean absolute deviation from the target hue
|
39 |
+
error = torch.abs(hue - target_hue).mean()
|
40 |
+
|
41 |
+
return error
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pillow
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
diffusers
|
5 |
+
huggingface_hub
|
6 |
+
numpy
|
sd.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy
|
2 |
+
import torch
|
3 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
8 |
+
import os
|
9 |
+
|
10 |
+
from hue_loss import hue_loss
|
11 |
+
|
12 |
+
|
13 |
+
torch.manual_seed(1)
|
14 |
+
# if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
|
15 |
+
|
16 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
17 |
+
logging.set_verbosity_error()
|
18 |
+
|
19 |
+
# Set device
|
20 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
|
22 |
+
from huggingface_hub import hf_hub_download
|
23 |
+
|
24 |
+
|
25 |
+
stl_list = [
|
26 |
+
'birb-style',
|
27 |
+
'cute-game-style',
|
28 |
+
'depthmap',
|
29 |
+
'line-art',
|
30 |
+
'low-poly-hd-logos-icons'
|
31 |
+
]
|
32 |
+
|
33 |
+
for stl in stl_list:
|
34 |
+
if not os.path.exists(stl):
|
35 |
+
os.mkdir(stl)
|
36 |
+
hf_hub_download(repo_id=f"sd-concepts-library/{stl}", filename="learned_embeds.bin", local_dir=f"./{stl}")
|
37 |
+
|
38 |
+
img_size_opt_dict = {
|
39 |
+
"512x512 - best quality but very slow": (512,512),
|
40 |
+
"256x256 - not good quality but still slow" : (256,256),
|
41 |
+
"128x128 - poor quality but faster" : (128,128),
|
42 |
+
}
|
43 |
+
|
44 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
45 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
|
46 |
+
|
47 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
48 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
49 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
50 |
+
|
51 |
+
# The UNet model for generating the latents.
|
52 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
53 |
+
|
54 |
+
# The noise scheduler
|
55 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
56 |
+
|
57 |
+
# To the GPU we go!
|
58 |
+
vae = vae.to(torch_device)
|
59 |
+
text_encoder = text_encoder.to(torch_device)
|
60 |
+
unet = unet.to(torch_device);
|
61 |
+
|
62 |
+
# Convert latents to images
|
63 |
+
|
64 |
+
def latents_to_pil(latents):
|
65 |
+
# bath of latents -> list of images
|
66 |
+
latents = (1 / 0.18215) * latents
|
67 |
+
with torch.no_grad():
|
68 |
+
image = vae.decode(latents).sample
|
69 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
70 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
71 |
+
images = (image * 255).round().astype("uint8")
|
72 |
+
pil_images = [Image.fromarray(image) for image in images]
|
73 |
+
return pil_images
|
74 |
+
|
75 |
+
# Prep Scheduler
|
76 |
+
def set_timesteps(scheduler, num_inference_steps):
|
77 |
+
scheduler.set_timesteps(num_inference_steps)
|
78 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
79 |
+
|
80 |
+
#Generating an image with these modified embeddings
|
81 |
+
def generate_with_embs(text_embeddings, text_input, loss_fn = None, loss_scale = 200, guidance_scale = 7.5,
|
82 |
+
seed_value = 1, num_inference_steps = 50, additional_guidence = False, hight_width = (512, 512)):
|
83 |
+
height, width = hight_width # default height of Stable Diffusion
|
84 |
+
# width = 512 # default width of Stable Diffusion
|
85 |
+
# num_inference_steps = 50 # Number of denoising steps
|
86 |
+
# Scale for classifier-free guidance
|
87 |
+
generator = torch.manual_seed(seed_value) # Seed generator to create the inital latent noise
|
88 |
+
batch_size = 1
|
89 |
+
|
90 |
+
|
91 |
+
max_length = text_input.input_ids.shape[-1]
|
92 |
+
uncond_input = tokenizer(
|
93 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
94 |
+
)
|
95 |
+
with torch.no_grad():
|
96 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
97 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
98 |
+
|
99 |
+
# Prep Scheduler
|
100 |
+
set_timesteps(scheduler, num_inference_steps)
|
101 |
+
|
102 |
+
# Prep latents
|
103 |
+
latents = torch.randn(
|
104 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
105 |
+
generator=generator,
|
106 |
+
)
|
107 |
+
latents = latents.to(torch_device)
|
108 |
+
latents = latents * scheduler.init_noise_sigma
|
109 |
+
|
110 |
+
# Loop
|
111 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
112 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
113 |
+
latent_model_input = torch.cat([latents] * 2)
|
114 |
+
sigma = scheduler.sigmas[i]
|
115 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
116 |
+
|
117 |
+
# predict the noise residual
|
118 |
+
with torch.no_grad():
|
119 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
120 |
+
|
121 |
+
# perform guidance
|
122 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
123 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
124 |
+
|
125 |
+
#### ADDITIONAL GUIDANCE ###
|
126 |
+
if i%5 == 0 and additional_guidence:
|
127 |
+
# Requires grad on the latents
|
128 |
+
latents = latents.detach().requires_grad_()
|
129 |
+
|
130 |
+
# Get the predicted x0:
|
131 |
+
latents_x0 = latents - sigma * noise_pred
|
132 |
+
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
133 |
+
|
134 |
+
# Decode to image space
|
135 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
136 |
+
|
137 |
+
# Calculate loss
|
138 |
+
loss = loss_fn(denoised_images) * loss_scale
|
139 |
+
|
140 |
+
# Occasionally print it out
|
141 |
+
if i%10==0:
|
142 |
+
print(i, 'loss:', loss.item())
|
143 |
+
|
144 |
+
# Get gradient
|
145 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
146 |
+
|
147 |
+
# Modify the latents based on this gradient
|
148 |
+
# latents = latents.detach() - cond_grad * sigma**2
|
149 |
+
latents = latents.detach() - cond_grad * sigma**2
|
150 |
+
|
151 |
+
# compute the previous noisy sample x_t -> x_t-1
|
152 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
153 |
+
|
154 |
+
# Ensure the latents do not lose the grad tracking
|
155 |
+
# latents.requires_grad_()
|
156 |
+
|
157 |
+
return latents_to_pil(latents)[0]
|
158 |
+
|
159 |
+
def get_output_embeds(input_embeddings):
|
160 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
161 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
162 |
+
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
163 |
+
|
164 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
165 |
+
# so that it doesn't just return the pooled final predictions:
|
166 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
167 |
+
inputs_embeds=input_embeddings,
|
168 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
169 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
170 |
+
output_attentions=None,
|
171 |
+
output_hidden_states=True, # We want the output embs not the final output
|
172 |
+
return_dict=None,
|
173 |
+
)
|
174 |
+
|
175 |
+
# We're interested in the output hidden state only
|
176 |
+
output = encoder_outputs[0]
|
177 |
+
|
178 |
+
# There is a final layer norm we need to pass these through
|
179 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
180 |
+
|
181 |
+
# And now they're ready!
|
182 |
+
return output
|
183 |
+
|
184 |
+
# Access the embedding layer
|
185 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
186 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
187 |
+
|
188 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
189 |
+
position_embeddings = pos_emb_layer(position_ids)
|
190 |
+
|
191 |
+
def generate_images(prompt, num_inference_steps, stl_list, img_size):
|
192 |
+
### add a statis text that will contain the style
|
193 |
+
prompt = prompt + ' in the style of puppy'
|
194 |
+
height_width = img_size_opt_dict[img_size]
|
195 |
+
# Tokenize
|
196 |
+
text_input = tokenizer(prompt, padding="max_length",
|
197 |
+
max_length=tokenizer.model_max_length,
|
198 |
+
truncation=True, return_tensors="pt")
|
199 |
+
input_ids = text_input.input_ids.to(torch_device)
|
200 |
+
|
201 |
+
# Get token embeddings
|
202 |
+
token_embeddings = token_emb_layer(input_ids)
|
203 |
+
|
204 |
+
wo_guide_lst = []
|
205 |
+
guide_lst = []
|
206 |
+
for i, stl in enumerate(stl_list):
|
207 |
+
stl_embed = torch.load(f'{stl}/learned_embeds.bin')
|
208 |
+
|
209 |
+
# The new embedding - our special birb word
|
210 |
+
replacement_token_embedding = stl_embed[f'<{stl}>'].to(torch_device)
|
211 |
+
|
212 |
+
# Insert this into the token embeddings
|
213 |
+
token_embeddings[0, min(torch.where(input_ids[0]==tokenizer.eos_token_id)[0]) - 1] = replacement_token_embedding.to(torch_device)
|
214 |
+
|
215 |
+
# Combine with pos embs
|
216 |
+
input_embeddings = token_embeddings + position_embeddings
|
217 |
+
|
218 |
+
# Feed through to get final output embs
|
219 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
220 |
+
|
221 |
+
# # And generate an image with this:
|
222 |
+
pil_im = generate_with_embs(modified_output_embeddings,
|
223 |
+
num_inference_steps = num_inference_steps,
|
224 |
+
text_input = text_input,
|
225 |
+
seed_value = i,additional_guidence = False,
|
226 |
+
hight_width = height_width)
|
227 |
+
wo_guide_lst.append((pil_im,stl))
|
228 |
+
|
229 |
+
pil_im = generate_with_embs(modified_output_embeddings,
|
230 |
+
num_inference_steps = num_inference_steps,
|
231 |
+
text_input = text_input,
|
232 |
+
loss_fn = hue_loss,
|
233 |
+
additional_guidence = True,
|
234 |
+
hight_width = height_width,
|
235 |
+
seed_value = i)
|
236 |
+
guide_lst.append((pil_im,stl))
|
237 |
+
|
238 |
+
return wo_guide_lst, guide_lst
|