Spaces:
Sleeping
Sleeping
import json | |
import gradio as gr | |
from pdfminer.high_level import extract_pages | |
from pdfminer.layout import LTTextBoxHorizontal, LTFigure, LTImage | |
import os | |
import io | |
from PIL import Image | |
import pandas as pd | |
import tabula | |
import camelot | |
from PyPDF2 import PdfReader | |
def parse_pdf(pdf_file, output_format, progress=gr.Progress()): | |
""" | |
Parses a PDF file, extracts text, tables, and images, and formats the output. | |
Args: | |
pdf_file: Path to the uploaded PDF file. | |
output_format: Desired output format ("JSON", "Markdown", or "HTML"). | |
progress: Gradio Progress object for displaying progress. | |
Returns: | |
tuple: Extracted text and download data in the specified format. | |
Returns an empty string and None if there is an error. | |
""" | |
try: | |
with open(pdf_file, 'rb') as file: | |
pages = list(extract_pages(file)) # Convert generator to list | |
text = "" | |
tables = [] | |
images = [] | |
# Iterate through pages and extract text and images | |
for i, page in enumerate(pages): | |
progress(i / len(pages)) # Update progress bar | |
for element in page: | |
if isinstance(element, LTTextBoxHorizontal): | |
text += element.get_text() | |
elif isinstance(element, (LTFigure, LTImage)): | |
try: | |
if hasattr(element, 'stream'): | |
image_data = element.stream.read() | |
image = Image.open(io.BytesIO(image_data)) | |
image_filename = f"extracted_image_{len(images)}.png" | |
image.save(image_filename) | |
images.append({"filename": image_filename}) | |
else: | |
for child in element: | |
if isinstance(child, LTImage): | |
image_data = child.stream.read() | |
image = Image.open(io.BytesIO(image_data)) | |
image_filename = f"extracted_image_{len(images)}.png" | |
image.save(image_filename) | |
images.append({"filename": image_filename}) | |
except Exception as e: | |
print(f"Error extracting image: {e}") | |
# Enhanced table extraction (tabula-py preferred, fallback to camelot) | |
try: | |
tables = tabula.read_pdf(pdf_file, pages='all', multiple_tables=True) | |
except Exception as e: | |
print(f"tabula-py failed: {e}. Trying camelot...") | |
try: | |
camelot_tables = camelot.read_pdf(pdf_file) | |
for table in camelot_tables: | |
tables.append(table.df) | |
except Exception as e: | |
print(f"camelot also failed: {e}. No tables extracted.") | |
# Format extracted data based on user selection | |
if output_format == "JSON": | |
json_data = { | |
"text": text, | |
"tables": [table.to_dict() for table in tables], | |
"images": images | |
} | |
download_data = json.dumps(json_data, indent=4) # Add indentation for readability | |
elif output_format == "Markdown": | |
markdown_text = f"# Extracted Text\n\n{text}\n\n# Tables\n" | |
for i, table in enumerate(tables): | |
markdown_text += f"## Table {i+1}\n" | |
markdown_text += table.to_markdown(index=False) + "\n\n" | |
# Image embedding in Markdown (using relative paths) | |
markdown_text += "\n\n# Images\n\n" | |
for image in images: | |
image_path = os.path.join(os.getcwd(), image["filename"]) | |
markdown_text += f'\n' | |
download_data = markdown_text | |
elif output_format == "HTML": | |
html_text = f"<p>{text}</p>\n\n<h2>Tables</h2>\n" | |
for i, table in enumerate(tables): | |
html_text += f"<h2>Table {i+1}</h2>\n" | |
html_text += table.to_html() + "<br>" | |
# Image embedding in HTML (using relative paths) | |
html_text += "\n\n<h2>Images</h2>\n\n" | |
for image in images: | |
image_path = os.path.join(os.getcwd(), image["filename"]) | |
html_text += f'<img src="{image_path}" alt="Image"><br>\n' | |
download_data = html_text.encode("utf-8") # Encode for HTML download | |
return text, download_data | |
except Exception as main_e: | |
print(f"A main error occurred: {main_e}") | |
return "", None # Return empty string and None in case of error | |
iface = gr.Interface( | |
fn=parse_pdf, | |
inputs=["file", gr.Dropdown(["JSON", "Markdown", "HTML"])], # Remove gr.Progress() from inputs | |
outputs=[ | |
gr.Text(label="Output Text"), | |
gr.File(label="Download Output") | |
], | |
title="PDF Parser", | |
description="Parse a PDF and choose the output format." | |
) | |
if __name__ == "__main__": | |
iface.launch(share=False) |