Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,661 Bytes
2a00960 bf225fc 6cad0b7 2a00960 fd61736 2a00960 fd61736 2a00960 fd61736 2a00960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import math
import random
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from scepter.modules.model.registry import DIFFUSIONS
from scepter.modules.utils.distribute import we
from scepter.modules.utils.logger import get_logger
from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model
from modules.model.utils.basic_utils import (
check_list_of_list,
pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor,
to_device,
unpack_tensor_into_imagelist
)
def process_edit_image(images,
masks,
tasks,
max_seq_len=1024,
max_aspect_ratio=4,
d=16,
**kwargs):
if not isinstance(images, list):
images = [images]
if not isinstance(masks, list):
masks = [masks]
if not isinstance(tasks, list):
tasks = [tasks]
img_tensors = []
mask_tensors = []
for img, mask, task in zip(images, masks, tasks):
if mask is None or mask == '':
mask = Image.new('L', img.size, 0)
W, H = img.size
if H / W > max_aspect_ratio:
img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
elif W / H > max_aspect_ratio:
img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])
H, W = img.height, img.width
scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
rH = int(H * scale) // d * d # ensure divisible by self.d
rW = int(W * scale) // d * d
img = TF.resize(img, (rH, rW),
interpolation=TF.InterpolationMode.BICUBIC)
mask = TF.resize(mask, (rH, rW),
interpolation=TF.InterpolationMode.NEAREST_EXACT)
mask = np.asarray(mask)
mask = np.where(mask > 128, 1, 0)
mask = mask.astype(
np.float32) if np.any(mask) else np.ones_like(mask).astype(
np.float32)
img_tensor = TF.to_tensor(img).to(we.device_id)
img_tensor = TF.normalize(img_tensor,
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
mask_tensor = TF.to_tensor(mask).to(we.device_id)
if task in ['inpainting', 'Try On', 'Inpainting']:
mask_indicator = mask_tensor.repeat(3, 1, 1)
img_tensor[mask_indicator == 1] = -1.0
img_tensors.append(img_tensor)
mask_tensors.append(mask_tensor)
return img_tensors, mask_tensors
class TextEmbedding(nn.Module):
def __init__(self, embedding_shape):
super().__init__()
self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
class ACEInference(DiffusionInference):
def __init__(self, logger=None):
if logger is None:
logger = get_logger(name='scepter')
self.logger = logger
self.loaded_model = {}
self.loaded_model_name = [
'diffusion_model', 'first_stage_model', 'cond_stage_model'
]
def init_from_cfg(self, cfg):
self.name = cfg.NAME
self.is_default = cfg.get('IS_DEFAULT', False)
module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
assert cfg.have('MODEL')
self.diffusion_model = self.infer_model(
cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
'DIFFUSION_MODEL',
None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
self.first_stage_model = self.infer_model(
cfg.MODEL.FIRST_STAGE_MODEL,
module_paras.get(
'FIRST_STAGE_MODEL',
None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
self.cond_stage_model = self.infer_model(
cfg.MODEL.COND_STAGE_MODEL,
module_paras.get(
'COND_STAGE_MODEL',
None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
logger=self.logger)
self.interpolate_func = lambda x: (F.interpolate(
x.unsqueeze(0),
scale_factor=1 / self.size_factor,
mode='nearest-exact') if x is not None else None)
self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
False)
if self.use_text_pos_embeddings:
self.text_position_embeddings = TextEmbedding(
(10, 4096)).eval().requires_grad_(False).to(we.device_id)
else:
self.text_position_embeddings = None
self.max_seq_len = cfg.MODEL.DIFFUSION_MODEL.MAX_SEQ_LEN
self.scale_factor = cfg.get('SCALE_FACTOR', 0.18215)
self.size_factor = cfg.get('SIZE_FACTOR', 8)
self.decoder_bias = cfg.get('DECODER_BIAS', 0)
self.default_n_prompt = cfg.get('DEFAULT_N_PROMPT', '')
self.dynamic_load(self.first_stage_model, 'first_stage_model')
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
self.dynamic_load(self.diffusion_model, 'diffusion_model')
@torch.no_grad()
def encode_first_stage(self, x, **kwargs):
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
with torch.autocast('cuda',
enabled=(dtype != 'float32'),
dtype=getattr(torch, dtype)):
z = [
self.scale_factor * get_model(self.first_stage_model)._encode(
i.unsqueeze(0).to(getattr(torch, dtype))) for i in x
]
return z
@torch.no_grad()
def decode_first_stage(self, z):
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
with torch.autocast('cuda',
enabled=(dtype != 'float32'),
dtype=getattr(torch, dtype)):
x = [
get_model(self.first_stage_model)._decode(
1. / self.scale_factor * i.to(getattr(torch, dtype)))
for i in z
]
return x
@torch.no_grad()
def __call__(self,
image=None,
mask=None,
prompt='',
task=None,
negative_prompt='',
output_height=512,
output_width=512,
sampler='ddim',
sample_steps=20,
guide_scale=4.5,
guide_rescale=0.5,
seed=-1,
history_io=None,
tar_index=0,
**kwargs):
input_image, input_mask = image, mask
g = torch.Generator(device=we.device_id)
seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
g.manual_seed(int(seed))
if input_image is not None:
assert isinstance(input_image, list) and isinstance(
input_mask, list)
if task is None:
task = [''] * len(input_image)
if not isinstance(prompt, list):
prompt = [prompt] * len(input_image)
if history_io is not None and len(history_io) > 0:
his_image, his_maks, his_prompt, his_task = history_io[
'image'], history_io['mask'], history_io[
'prompt'], history_io['task']
assert len(his_image) == len(his_maks) == len(
his_prompt) == len(his_task)
input_image = his_image + input_image
input_mask = his_maks + input_mask
task = his_task + task
prompt = his_prompt + [prompt[-1]]
prompt = [
pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
for i, pp in enumerate(prompt)
]
edit_image, edit_image_mask = process_edit_image(
input_image, input_mask, task, max_seq_len=self.max_seq_len)
image, image_mask = edit_image[tar_index], edit_image_mask[
tar_index]
edit_image, edit_image_mask = [edit_image], [edit_image_mask]
else:
edit_image = edit_image_mask = [[]]
image = torch.zeros(
size=[3, int(output_height),
int(output_width)])
image_mask = torch.ones(
size=[1, int(output_height),
int(output_width)])
if not isinstance(prompt, list):
prompt = [prompt]
image, image_mask, prompt = [image], [image_mask], [prompt]
assert check_list_of_list(prompt) and check_list_of_list(
edit_image) and check_list_of_list(edit_image_mask)
# Assign Negative Prompt
if isinstance(negative_prompt, list):
negative_prompt = negative_prompt[0]
assert isinstance(negative_prompt, str)
n_prompt = copy.deepcopy(prompt)
for nn_p_id, nn_p in enumerate(n_prompt):
assert isinstance(nn_p, list)
n_prompt[nn_p_id][-1] = negative_prompt
ctx, null_ctx = {}, {}
# Get Noise Shape
image = to_device(image)
x = self.encode_first_stage(image)
noise = [
torch.empty(*i.shape, device=we.device_id).normal_(generator=g)
for i in x
]
noise, x_shapes = pack_imagelist_into_tensor(noise)
ctx['x_shapes'] = null_ctx['x_shapes'] = x_shapes
image_mask = to_device(image_mask, strict=False)
cond_mask = [self.interpolate_func(i) for i in image_mask
] if image_mask is not None else [None] * len(image)
ctx['x_mask'] = null_ctx['x_mask'] = cond_mask
# Encode Prompt
function_name, dtype = self.get_function_info(self.cond_stage_model)
cont, cont_mask = getattr(get_model(self.cond_stage_model),
function_name)(prompt)
cont, cont_mask = self.cond_stage_embeddings(prompt, edit_image, cont,
cont_mask)
null_cont, null_cont_mask = getattr(get_model(self.cond_stage_model),
function_name)(n_prompt)
null_cont, null_cont_mask = self.cond_stage_embeddings(
prompt, edit_image, null_cont, null_cont_mask)
ctx['crossattn'] = cont
null_ctx['crossattn'] = null_cont
# Encode Edit Images
edit_image = [to_device(i, strict=False) for i in edit_image]
edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
e_img, e_mask = [], []
for u, m in zip(edit_image, edit_image_mask):
if u is None:
continue
if m is None:
m = [None] * len(u)
e_img.append(self.encode_first_stage(u, **kwargs))
e_mask.append([self.interpolate_func(i) for i in m])
null_ctx['edit'] = ctx['edit'] = e_img
null_ctx['edit_mask'] = ctx['edit_mask'] = e_mask
# Diffusion Process
function_name, dtype = self.get_function_info(self.diffusion_model)
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
latent = self.diffusion.sample(
noise=noise,
sampler=sampler,
model=get_model(self.diffusion_model),
model_kwargs=[{
'cond':
ctx,
'mask':
cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
}, {
'cond':
null_ctx,
'mask':
null_cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
}] if guide_scale is not None and guide_scale > 1 else {
'cond':
null_ctx,
'mask':
cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
},
steps=sample_steps,
show_progress=True,
seed=seed,
guide_scale=guide_scale,
guide_rescale=guide_rescale,
return_intermediate=None,
**kwargs)
# Decode to Pixel Space
samples = unpack_tensor_into_imagelist(latent, x_shapes)
x_samples = self.decode_first_stage(samples)
imgs = [
torch.clamp((x_i + 1.0) / 2.0 + self.decoder_bias / 255,
min=0.0,
max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
for x_i in x_samples
]
imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
return imgs
def cond_stage_embeddings(self, prompt, edit_image, cont, cont_mask):
if self.use_text_pos_embeddings and not torch.sum(
self.text_position_embeddings.pos) > 0:
identifier_cont, _ = getattr(get_model(self.cond_stage_model),
'encode')(self.text_indentifers,
return_mask=True)
self.text_position_embeddings.load_state_dict(
{'pos': identifier_cont[:, 0, :]})
cont_, cont_mask_ = [], []
for pp, edit, c, cm in zip(prompt, edit_image, cont, cont_mask):
if isinstance(pp, list):
cont_.append([c[-1], *c] if len(edit) > 0 else [c[-1]])
cont_mask_.append([cm[-1], *cm] if len(edit) > 0 else [cm[-1]])
else:
raise NotImplementedError
return cont_, cont_mask_
|