File size: 14,661 Bytes
2a00960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf225fc
 
 
 
 
 
6cad0b7
2a00960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd61736
 
 
 
2a00960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd61736
2a00960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd61736
2a00960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import math
import random
import numpy as np
from PIL import Image

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF

from scepter.modules.model.registry import DIFFUSIONS
from scepter.modules.utils.distribute import we
from scepter.modules.utils.logger import get_logger
from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model

from modules.model.utils.basic_utils import (
    check_list_of_list,
    pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor,
    to_device,
    unpack_tensor_into_imagelist
)


def process_edit_image(images,
                       masks,
                       tasks,
                       max_seq_len=1024,
                       max_aspect_ratio=4,
                       d=16,
                       **kwargs):

    if not isinstance(images, list):
        images = [images]
    if not isinstance(masks, list):
        masks = [masks]
    if not isinstance(tasks, list):
        tasks = [tasks]

    img_tensors = []
    mask_tensors = []
    for img, mask, task in zip(images, masks, tasks):
        if mask is None or mask == '':
            mask = Image.new('L', img.size, 0)
        W, H = img.size
        if H / W > max_aspect_ratio:
            img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
            mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
        elif W / H > max_aspect_ratio:
            img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
            mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])

        H, W = img.height, img.width
        scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
        rH = int(H * scale) // d * d  # ensure divisible by self.d
        rW = int(W * scale) // d * d

        img = TF.resize(img, (rH, rW),
                        interpolation=TF.InterpolationMode.BICUBIC)
        mask = TF.resize(mask, (rH, rW),
                         interpolation=TF.InterpolationMode.NEAREST_EXACT)

        mask = np.asarray(mask)
        mask = np.where(mask > 128, 1, 0)
        mask = mask.astype(
            np.float32) if np.any(mask) else np.ones_like(mask).astype(
                np.float32)

        img_tensor = TF.to_tensor(img).to(we.device_id)
        img_tensor = TF.normalize(img_tensor,
                                  mean=[0.5, 0.5, 0.5],
                                  std=[0.5, 0.5, 0.5])
        mask_tensor = TF.to_tensor(mask).to(we.device_id)
        if task in ['inpainting', 'Try On', 'Inpainting']:
            mask_indicator = mask_tensor.repeat(3, 1, 1)
            img_tensor[mask_indicator == 1] = -1.0
        img_tensors.append(img_tensor)
        mask_tensors.append(mask_tensor)
    return img_tensors, mask_tensors


class TextEmbedding(nn.Module):
    def __init__(self, embedding_shape):
        super().__init__()
        self.pos = nn.Parameter(data=torch.zeros(embedding_shape))


class ACEInference(DiffusionInference):
    def __init__(self, logger=None):
        if logger is None:
            logger = get_logger(name='scepter')
        self.logger = logger
        self.loaded_model = {}
        self.loaded_model_name = [
            'diffusion_model', 'first_stage_model', 'cond_stage_model'
        ]

    def init_from_cfg(self, cfg):
        self.name = cfg.NAME
        self.is_default = cfg.get('IS_DEFAULT', False)
        module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
        assert cfg.have('MODEL')

        self.diffusion_model = self.infer_model(
            cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
                'DIFFUSION_MODEL',
                None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
        self.first_stage_model = self.infer_model(
            cfg.MODEL.FIRST_STAGE_MODEL,
            module_paras.get(
                'FIRST_STAGE_MODEL',
                None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
        self.cond_stage_model = self.infer_model(
            cfg.MODEL.COND_STAGE_MODEL,
            module_paras.get(
                'COND_STAGE_MODEL',
                None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
        self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
                                          logger=self.logger)

        self.interpolate_func = lambda x: (F.interpolate(
            x.unsqueeze(0),
            scale_factor=1 / self.size_factor,
            mode='nearest-exact') if x is not None else None)
        self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
        self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
                                               False)
        if self.use_text_pos_embeddings:
            self.text_position_embeddings = TextEmbedding(
                (10, 4096)).eval().requires_grad_(False).to(we.device_id)
        else:
            self.text_position_embeddings = None

        self.max_seq_len = cfg.MODEL.DIFFUSION_MODEL.MAX_SEQ_LEN
        self.scale_factor = cfg.get('SCALE_FACTOR', 0.18215)
        self.size_factor = cfg.get('SIZE_FACTOR', 8)
        self.decoder_bias = cfg.get('DECODER_BIAS', 0)
        self.default_n_prompt = cfg.get('DEFAULT_N_PROMPT', '')

        self.dynamic_load(self.first_stage_model, 'first_stage_model')
        self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
        self.dynamic_load(self.diffusion_model, 'diffusion_model')

    @torch.no_grad()
    def encode_first_stage(self, x, **kwargs):
        _, dtype = self.get_function_info(self.first_stage_model, 'encode')
        with torch.autocast('cuda',
                            enabled=(dtype != 'float32'),
                            dtype=getattr(torch, dtype)):
            z = [
                self.scale_factor * get_model(self.first_stage_model)._encode(
                    i.unsqueeze(0).to(getattr(torch, dtype))) for i in x
            ]
        return z

    @torch.no_grad()
    def decode_first_stage(self, z):
        _, dtype = self.get_function_info(self.first_stage_model, 'decode')
        with torch.autocast('cuda',
                            enabled=(dtype != 'float32'),
                            dtype=getattr(torch, dtype)):
            x = [
                get_model(self.first_stage_model)._decode(
                    1. / self.scale_factor * i.to(getattr(torch, dtype)))
                for i in z
            ]
        return x

    @torch.no_grad()
    def __call__(self,
                 image=None,
                 mask=None,
                 prompt='',
                 task=None,
                 negative_prompt='',
                 output_height=512,
                 output_width=512,
                 sampler='ddim',
                 sample_steps=20,
                 guide_scale=4.5,
                 guide_rescale=0.5,
                 seed=-1,
                 history_io=None,
                 tar_index=0,
                 **kwargs):
        input_image, input_mask = image, mask
        g = torch.Generator(device=we.device_id)
        seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
        g.manual_seed(int(seed))

        if input_image is not None:
            assert isinstance(input_image, list) and isinstance(
                input_mask, list)
            if task is None:
                task = [''] * len(input_image)
            if not isinstance(prompt, list):
                prompt = [prompt] * len(input_image)
            if history_io is not None and len(history_io) > 0:
                his_image, his_maks, his_prompt, his_task = history_io[
                    'image'], history_io['mask'], history_io[
                        'prompt'], history_io['task']
                assert len(his_image) == len(his_maks) == len(
                    his_prompt) == len(his_task)
                input_image = his_image + input_image
                input_mask = his_maks + input_mask
                task = his_task + task
                prompt = his_prompt + [prompt[-1]]
                prompt = [
                    pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
                    for i, pp in enumerate(prompt)
                ]

            edit_image, edit_image_mask = process_edit_image(
                input_image, input_mask, task, max_seq_len=self.max_seq_len)

            image, image_mask = edit_image[tar_index], edit_image_mask[
                tar_index]
            edit_image, edit_image_mask = [edit_image], [edit_image_mask]

        else:
            edit_image = edit_image_mask = [[]]
            image = torch.zeros(
                size=[3, int(output_height),
                      int(output_width)])
            image_mask = torch.ones(
                size=[1, int(output_height),
                      int(output_width)])
            if not isinstance(prompt, list):
                prompt = [prompt]

        image, image_mask, prompt = [image], [image_mask], [prompt]
        assert check_list_of_list(prompt) and check_list_of_list(
            edit_image) and check_list_of_list(edit_image_mask)
        # Assign Negative Prompt
        if isinstance(negative_prompt, list):
            negative_prompt = negative_prompt[0]
        assert isinstance(negative_prompt, str)

        n_prompt = copy.deepcopy(prompt)
        for nn_p_id, nn_p in enumerate(n_prompt):
            assert isinstance(nn_p, list)
            n_prompt[nn_p_id][-1] = negative_prompt

        ctx, null_ctx = {}, {}

        # Get Noise Shape
        image = to_device(image)
        x = self.encode_first_stage(image)
        noise = [
            torch.empty(*i.shape, device=we.device_id).normal_(generator=g)
            for i in x
        ]
        noise, x_shapes = pack_imagelist_into_tensor(noise)
        ctx['x_shapes'] = null_ctx['x_shapes'] = x_shapes

        image_mask = to_device(image_mask, strict=False)
        cond_mask = [self.interpolate_func(i) for i in image_mask
                     ] if image_mask is not None else [None] * len(image)
        ctx['x_mask'] = null_ctx['x_mask'] = cond_mask

        # Encode Prompt
        
        function_name, dtype = self.get_function_info(self.cond_stage_model)
        cont, cont_mask = getattr(get_model(self.cond_stage_model),
                                  function_name)(prompt)
        cont, cont_mask = self.cond_stage_embeddings(prompt, edit_image, cont,
                                                     cont_mask)
        null_cont, null_cont_mask = getattr(get_model(self.cond_stage_model),
                                            function_name)(n_prompt)
        null_cont, null_cont_mask = self.cond_stage_embeddings(
            prompt, edit_image, null_cont, null_cont_mask)
        ctx['crossattn'] = cont
        null_ctx['crossattn'] = null_cont

        # Encode Edit Images
        edit_image = [to_device(i, strict=False) for i in edit_image]
        edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
        e_img, e_mask = [], []
        for u, m in zip(edit_image, edit_image_mask):
            if u is None:
                continue
            if m is None:
                m = [None] * len(u)
            e_img.append(self.encode_first_stage(u, **kwargs))
            e_mask.append([self.interpolate_func(i) for i in m])

        null_ctx['edit'] = ctx['edit'] = e_img
        null_ctx['edit_mask'] = ctx['edit_mask'] = e_mask

        # Diffusion Process
        function_name, dtype = self.get_function_info(self.diffusion_model)
        with torch.autocast('cuda',
                            enabled=dtype in ('float16', 'bfloat16'),
                            dtype=getattr(torch, dtype)):
            latent = self.diffusion.sample(
                noise=noise,
                sampler=sampler,
                model=get_model(self.diffusion_model),
                model_kwargs=[{
                    'cond':
                    ctx,
                    'mask':
                    cont_mask,
                    'text_position_embeddings':
                    self.text_position_embeddings.pos if hasattr(
                        self.text_position_embeddings, 'pos') else None
                }, {
                    'cond':
                    null_ctx,
                    'mask':
                    null_cont_mask,
                    'text_position_embeddings':
                    self.text_position_embeddings.pos if hasattr(
                        self.text_position_embeddings, 'pos') else None
                }] if guide_scale is not None and guide_scale > 1 else {
                    'cond':
                    null_ctx,
                    'mask':
                    cont_mask,
                    'text_position_embeddings':
                    self.text_position_embeddings.pos if hasattr(
                        self.text_position_embeddings, 'pos') else None
                },
                steps=sample_steps,
                show_progress=True,
                seed=seed,
                guide_scale=guide_scale,
                guide_rescale=guide_rescale,
                return_intermediate=None,
                **kwargs)

        # Decode to Pixel Space
        samples = unpack_tensor_into_imagelist(latent, x_shapes)
        x_samples = self.decode_first_stage(samples)

        imgs = [
            torch.clamp((x_i + 1.0) / 2.0 + self.decoder_bias / 255,
                        min=0.0,
                        max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
            for x_i in x_samples
        ]
        imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
        return imgs

    def cond_stage_embeddings(self, prompt, edit_image, cont, cont_mask):
        if self.use_text_pos_embeddings and not torch.sum(
                self.text_position_embeddings.pos) > 0:
            identifier_cont, _ = getattr(get_model(self.cond_stage_model),
                                         'encode')(self.text_indentifers,
                                                   return_mask=True)
            self.text_position_embeddings.load_state_dict(
                {'pos': identifier_cont[:, 0, :]})

        cont_, cont_mask_ = [], []
        for pp, edit, c, cm in zip(prompt, edit_image, cont, cont_mask):
            if isinstance(pp, list):
                cont_.append([c[-1], *c] if len(edit) > 0 else [c[-1]])
                cont_mask_.append([cm[-1], *cm] if len(edit) > 0 else [cm[-1]])
            else:
                raise NotImplementedError

        return cont_, cont_mask_