Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,257 Bytes
2a00960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
import torch
from tqdm import tqdm
from scepter.modules.utils.data import transfer_data_to_cuda
from scepter.modules.utils.distribute import we
from scepter.modules.utils.probe import ProbeData
from scepter.modules.solver.registry import SOLVERS
from scepter.modules.solver.diffusion_solver import LatentDiffusionSolver
@SOLVERS.register_class()
class ACESolverV1(LatentDiffusionSolver):
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
self.log_train_num = cfg.get('LOG_TRAIN_NUM', -1)
def save_results(self, results):
log_data, log_label = [], []
for result in results:
ret_images, ret_labels = [], []
edit_image = result.get('edit_image', None)
edit_mask = result.get('edit_mask', None)
if edit_image is not None:
for i, edit_img in enumerate(result['edit_image']):
if edit_img is None:
continue
ret_images.append(
(edit_img.permute(1, 2, 0).cpu().numpy() * 255).astype(
np.uint8))
ret_labels.append(f'edit_image{i}; ')
if edit_mask is not None:
ret_images.append(
(edit_mask[i].permute(1, 2, 0).cpu().numpy() *
255).astype(np.uint8))
ret_labels.append(f'edit_mask{i}; ')
target_image = result.get('target_image', None)
target_mask = result.get('target_mask', None)
if target_image is not None:
ret_images.append(
(target_image.permute(1, 2, 0).cpu().numpy() * 255).astype(
np.uint8))
ret_labels.append('target_image; ')
if target_mask is not None:
ret_images.append(
(target_mask.permute(1, 2, 0).cpu().numpy() *
255).astype(np.uint8))
ret_labels.append('target_mask; ')
reconstruct_image = result.get('reconstruct_image', None)
if reconstruct_image is not None:
ret_images.append(
(reconstruct_image.permute(1, 2, 0).cpu().numpy() *
255).astype(np.uint8))
ret_labels.append(f"{result['instruction']}")
log_data.append(ret_images)
log_label.append(ret_labels)
return log_data, log_label
@torch.no_grad()
def run_eval(self):
self.eval_mode()
self.before_all_iter(self.hooks_dict[self._mode])
all_results = []
for batch_idx, batch_data in tqdm(
enumerate(self.datas[self._mode].dataloader)):
self.before_iter(self.hooks_dict[self._mode])
if self.sample_args:
batch_data.update(self.sample_args.get_lowercase_dict())
with torch.autocast(device_type='cuda',
enabled=self.use_amp,
dtype=self.dtype):
results = self.run_step_eval(transfer_data_to_cuda(batch_data),
batch_idx,
step=self.total_iter,
rank=we.rank)
all_results.extend(results)
self.after_iter(self.hooks_dict[self._mode])
log_data, log_label = self.save_results(all_results)
self.register_probe({'eval_label': log_label})
self.register_probe({
'eval_image':
ProbeData(log_data,
is_image=True,
build_html=True,
build_label=log_label)
})
self.after_all_iter(self.hooks_dict[self._mode])
@torch.no_grad()
def run_test(self):
self.test_mode()
self.before_all_iter(self.hooks_dict[self._mode])
all_results = []
for batch_idx, batch_data in tqdm(
enumerate(self.datas[self._mode].dataloader)):
self.before_iter(self.hooks_dict[self._mode])
if self.sample_args:
batch_data.update(self.sample_args.get_lowercase_dict())
with torch.autocast(device_type='cuda',
enabled=self.use_amp,
dtype=self.dtype):
results = self.run_step_eval(transfer_data_to_cuda(batch_data),
batch_idx,
step=self.total_iter,
rank=we.rank)
all_results.extend(results)
self.after_iter(self.hooks_dict[self._mode])
log_data, log_label = self.save_results(all_results)
self.register_probe({'test_label': log_label})
self.register_probe({
'test_image':
ProbeData(log_data,
is_image=True,
build_html=True,
build_label=log_label)
})
self.after_all_iter(self.hooks_dict[self._mode])
@property
def probe_data(self):
if not we.debug and self.mode == 'train':
batch_data = transfer_data_to_cuda(
self.current_batch_data[self.mode])
self.eval_mode()
with torch.autocast(device_type='cuda',
enabled=self.use_amp,
dtype=self.dtype):
batch_data['log_num'] = self.log_train_num
results = self.run_step_eval(batch_data)
self.train_mode()
log_data, log_label = self.save_results(results)
self.register_probe({
'train_image':
ProbeData(log_data,
is_image=True,
build_html=True,
build_label=log_label)
})
self.register_probe({'train_label': log_label})
return super(LatentDiffusionSolver, self).probe_data
|