Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,507 Bytes
e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf 5b0cd30 e8e3dcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import math
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from PIL import Image
import torchvision.transforms as T
from scepter.modules.model.registry import DIFFUSIONS
from scepter.modules.model.utils.basic_utils import check_list_of_list
from scepter.modules.model.utils.basic_utils import \
pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor
from scepter.modules.model.utils.basic_utils import (
to_device, unpack_tensor_into_imagelist)
from scepter.modules.utils.distribute import we
from scepter.modules.utils.logger import get_logger
from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model
def process_edit_image(images,
masks,
tasks,
max_seq_len=1024,
max_aspect_ratio=4,
d=16,
**kwargs):
if not isinstance(images, list):
images = [images]
if not isinstance(masks, list):
masks = [masks]
if not isinstance(tasks, list):
tasks = [tasks]
img_tensors = []
mask_tensors = []
for img, mask, task in zip(images, masks, tasks):
if mask is None or mask == '':
mask = Image.new('L', img.size, 0)
W, H = img.size
if H / W > max_aspect_ratio:
img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
elif W / H > max_aspect_ratio:
img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])
H, W = img.height, img.width
scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
rH = int(H * scale) // d * d # ensure divisible by self.d
rW = int(W * scale) // d * d
img = TF.resize(img, (rH, rW),
interpolation=TF.InterpolationMode.BICUBIC)
mask = TF.resize(mask, (rH, rW),
interpolation=TF.InterpolationMode.NEAREST_EXACT)
mask = np.asarray(mask)
mask = np.where(mask > 128, 1, 0)
mask = mask.astype(
np.float32) if np.any(mask) else np.ones_like(mask).astype(
np.float32)
img_tensor = TF.to_tensor(img).to(we.device_id)
img_tensor = TF.normalize(img_tensor,
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
mask_tensor = TF.to_tensor(mask).to(we.device_id)
if task in ['inpainting', 'Try On', 'Inpainting']:
mask_indicator = mask_tensor.repeat(3, 1, 1)
img_tensor[mask_indicator == 1] = -1.0
img_tensors.append(img_tensor)
mask_tensors.append(mask_tensor)
return img_tensors, mask_tensors
class TextEmbedding(nn.Module):
def __init__(self, embedding_shape):
super().__init__()
self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
class RefinerInference(DiffusionInference):
def init_from_cfg(self, cfg):
super().init_from_cfg(cfg)
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION, logger=self.logger) \
if cfg.MODEL.have('DIFFUSION') else None
self.max_seq_length = cfg.MODEL.get("MAX_SEQ_LENGTH", 4096)
assert self.diffusion is not None
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
self.dynamic_load(self.diffusion_model, 'diffusion_model')
self.dynamic_load(self.first_stage_model, 'first_stage_model')
@torch.no_grad()
def encode_first_stage(self, x, **kwargs):
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
def run_one_image(u):
zu = get_model(self.first_stage_model).encode(u)
if isinstance(zu, (tuple, list)):
zu = zu[0]
return zu
z = [run_one_image(u.unsqueeze(0) if u.dim == 3 else u) for u in x]
return z
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
c, H, W = image.shape
scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
rH = int(H * scale) // 16 * 16 # ensure divisible by self.d
rW = int(W * scale) // 16 * 16
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
return image
@torch.no_grad()
def decode_first_stage(self, z):
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
return [get_model(self.first_stage_model).decode(zu) for zu in z]
def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
noise = torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(h / 16),
2 * math.ceil(w / 16),
device=device,
dtype=dtype,
generator=torch.Generator(device=device).manual_seed(seed),
)
return noise
def refine(self,
x_samples=None,
prompt=None,
reverse_scale=-1.,
seed = 2024,
use_dynamic_model = False,
**kwargs
):
print(prompt)
value_input = copy.deepcopy(self.input)
x_samples = [self.upscale_resize(x) for x in x_samples]
noise = []
for i, x in enumerate(x_samples):
noise_ = self.noise_sample(1, x.shape[1],
x.shape[2], seed,
device = x.device)
noise.append(noise_)
noise, x_shapes = pack_imagelist_into_tensor(noise)
if reverse_scale > 0:
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
x_samples = [x.unsqueeze(0) for x in x_samples]
x_start = self.encode_first_stage(x_samples, **kwargs)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
x_start, _ = pack_imagelist_into_tensor(x_start)
else:
x_start = None
# cond stage
if use_dynamic_model: self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
function_name, dtype = self.get_function_info(self.cond_stage_model)
with torch.autocast('cuda',
enabled=dtype == 'float16',
dtype=getattr(torch, dtype)):
ctx = getattr(get_model(self.cond_stage_model),
function_name)(prompt)
ctx["x_shapes"] = x_shapes
if use_dynamic_model: self.dynamic_unload(self.cond_stage_model,
'cond_stage_model',
skip_loaded=True)
if use_dynamic_model: self.dynamic_load(self.diffusion_model, 'diffusion_model')
# UNet use input n_prompt
function_name, dtype = self.get_function_info(
self.diffusion_model)
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
solver_sample = value_input.get('sample', 'flow_euler')
sample_steps = value_input.get('sample_steps', 20)
guide_scale = value_input.get('guide_scale', 3.5)
if guide_scale is not None:
guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device,
dtype=noise.dtype)
else:
guide_scale = None
latent = self.diffusion.sample(
noise=noise,
sampler=solver_sample,
model=get_model(self.diffusion_model),
model_kwargs={"cond": ctx, "guidance": guide_scale},
steps=sample_steps,
show_progress=True,
guide_scale=guide_scale,
return_intermediate=None,
reverse_scale=reverse_scale,
x=x_start,
**kwargs).float()
latent = unpack_tensor_into_imagelist(latent, x_shapes)
if use_dynamic_model: self.dynamic_unload(self.diffusion_model,
'diffusion_model',
skip_loaded=True)
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
x_samples = self.decode_first_stage(latent)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
return x_samples
class ACEInference(DiffusionInference):
def __init__(self, logger=None):
if logger is None:
logger = get_logger(name='scepter')
self.logger = logger
self.loaded_model = {}
self.loaded_model_name = [
'diffusion_model', 'first_stage_model', 'cond_stage_model'
]
def init_from_cfg(self, cfg):
self.name = cfg.NAME
self.is_default = cfg.get('IS_DEFAULT', False)
self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
assert cfg.have('MODEL')
self.diffusion_model = self.infer_model(
cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
'DIFFUSION_MODEL',
None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
self.first_stage_model = self.infer_model(
cfg.MODEL.FIRST_STAGE_MODEL,
module_paras.get(
'FIRST_STAGE_MODEL',
None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
self.cond_stage_model = self.infer_model(
cfg.MODEL.COND_STAGE_MODEL,
module_paras.get(
'COND_STAGE_MODEL',
None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
self.refiner_model_cfg = cfg.get('REFINER_MODEL', None)
# self.refiner_scale = cfg.get('REFINER_SCALE', 0.)
# self.refiner_prompt = cfg.get('REFINER_PROMPT', "")
self.ace_prompt = cfg.get("ACE_PROMPT", [])
if self.refiner_model_cfg:
self.refiner_module = RefinerInference(self.logger)
self.refiner_module.init_from_cfg(self.refiner_model_cfg)
else:
self.refiner_module = None
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
logger=self.logger)
self.interpolate_func = lambda x: (F.interpolate(
x.unsqueeze(0),
scale_factor=1 / self.size_factor,
mode='nearest-exact') if x is not None else None)
self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
False)
if self.use_text_pos_embeddings:
self.text_position_embeddings = TextEmbedding(
(10, 4096)).eval().requires_grad_(False).to(we.device_id)
else:
self.text_position_embeddings = None
self.max_seq_len = cfg.MODEL.DIFFUSION_MODEL.MAX_SEQ_LEN
self.scale_factor = cfg.get('SCALE_FACTOR', 0.18215)
self.size_factor = cfg.get('SIZE_FACTOR', 8)
self.decoder_bias = cfg.get('DECODER_BIAS', 0)
self.default_n_prompt = cfg.get('DEFAULT_N_PROMPT', '')
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
self.dynamic_load(self.diffusion_model, 'diffusion_model')
self.dynamic_load(self.first_stage_model, 'first_stage_model')
@torch.no_grad()
def encode_first_stage(self, x, **kwargs):
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
with torch.autocast('cuda',
enabled=(dtype != 'float32'),
dtype=getattr(torch, dtype)):
z = [
self.scale_factor * get_model(self.first_stage_model)._encode(
i.unsqueeze(0).to(getattr(torch, dtype))) for i in x
]
return z
@torch.no_grad()
def decode_first_stage(self, z):
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
with torch.autocast('cuda',
enabled=(dtype != 'float32'),
dtype=getattr(torch, dtype)):
x = [
get_model(self.first_stage_model)._decode(
1. / self.scale_factor * i.to(getattr(torch, dtype)))
for i in z
]
return x
@torch.no_grad()
def __call__(self,
image=None,
mask=None,
prompt='',
task=None,
negative_prompt='',
output_height=512,
output_width=512,
sampler='ddim',
sample_steps=20,
guide_scale=4.5,
guide_rescale=0.5,
seed=-1,
history_io=None,
tar_index=0,
**kwargs):
input_image, input_mask = image, mask
g = torch.Generator(device=we.device_id)
seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
g.manual_seed(int(seed))
if input_image is not None:
# assert isinstance(input_image, list) and isinstance(input_mask, list)
if task is None:
task = [''] * len(input_image)
if not isinstance(prompt, list):
prompt = [prompt] * len(input_image)
if history_io is not None and len(history_io) > 0:
his_image, his_maks, his_prompt, his_task = history_io[
'image'], history_io['mask'], history_io[
'prompt'], history_io['task']
assert len(his_image) == len(his_maks) == len(
his_prompt) == len(his_task)
input_image = his_image + input_image
input_mask = his_maks + input_mask
task = his_task + task
prompt = his_prompt + [prompt[-1]]
prompt = [
pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
for i, pp in enumerate(prompt)
]
edit_image, edit_image_mask = process_edit_image(
input_image, input_mask, task, max_seq_len=self.max_seq_len)
image, image_mask = edit_image[tar_index], edit_image_mask[
tar_index]
edit_image, edit_image_mask = [edit_image], [edit_image_mask]
else:
edit_image = edit_image_mask = [[]]
image = torch.zeros(
size=[3, int(output_height),
int(output_width)])
image_mask = torch.ones(
size=[1, int(output_height),
int(output_width)])
if not isinstance(prompt, list):
prompt = [prompt]
image, image_mask, prompt = [image], [image_mask], [prompt]
assert check_list_of_list(prompt) and check_list_of_list(
edit_image) and check_list_of_list(edit_image_mask)
# Assign Negative Prompt
if isinstance(negative_prompt, list):
negative_prompt = negative_prompt[0]
assert isinstance(negative_prompt, str)
n_prompt = copy.deepcopy(prompt)
for nn_p_id, nn_p in enumerate(n_prompt):
assert isinstance(nn_p, list)
n_prompt[nn_p_id][-1] = negative_prompt
is_txt_image = sum([len(e_i) for e_i in edit_image]) < 1
image = to_device(image)
refiner_scale = kwargs.pop("refiner_scale", 0.0)
refiner_prompt = kwargs.pop("refiner_prompt", "")
use_ace = kwargs.pop("use_ace", True)
# <= 0 use ace as the txt2img generator.
if use_ace and (not is_txt_image or refiner_scale <= 0):
ctx, null_ctx = {}, {}
# Get Noise Shape
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
x = self.encode_first_stage(image)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
noise = [
torch.empty(*i.shape, device=we.device_id).normal_(generator=g)
for i in x
]
noise, x_shapes = pack_imagelist_into_tensor(noise)
ctx['x_shapes'] = null_ctx['x_shapes'] = x_shapes
image_mask = to_device(image_mask, strict=False)
cond_mask = [self.interpolate_func(i) for i in image_mask
] if image_mask is not None else [None] * len(image)
ctx['x_mask'] = null_ctx['x_mask'] = cond_mask
# Encode Prompt
if use_dynamic_model: self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
function_name, dtype = self.get_function_info(self.cond_stage_model)
cont, cont_mask = getattr(get_model(self.cond_stage_model),
function_name)(prompt)
cont, cont_mask = self.cond_stage_embeddings(prompt, edit_image, cont,
cont_mask)
null_cont, null_cont_mask = getattr(get_model(self.cond_stage_model),
function_name)(n_prompt)
null_cont, null_cont_mask = self.cond_stage_embeddings(
prompt, edit_image, null_cont, null_cont_mask)
if use_dynamic_model: self.dynamic_unload(self.cond_stage_model,
'cond_stage_model',
skip_loaded=False)
ctx['crossattn'] = cont
null_ctx['crossattn'] = null_cont
# Encode Edit Images
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
edit_image = [to_device(i, strict=False) for i in edit_image]
edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
e_img, e_mask = [], []
for u, m in zip(edit_image, edit_image_mask):
if u is None:
continue
if m is None:
m = [None] * len(u)
e_img.append(self.encode_first_stage(u, **kwargs))
e_mask.append([self.interpolate_func(i) for i in m])
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=True)
null_ctx['edit'] = ctx['edit'] = e_img
null_ctx['edit_mask'] = ctx['edit_mask'] = e_mask
# Diffusion Process
if use_dynamic_model: self.dynamic_load(self.diffusion_model, 'diffusion_model')
function_name, dtype = self.get_function_info(self.diffusion_model)
with torch.autocast('cuda',
enabled=dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, dtype)):
latent = self.diffusion.sample(
noise=noise,
sampler=sampler,
model=get_model(self.diffusion_model),
model_kwargs=[{
'cond':
ctx,
'mask':
cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
}, {
'cond':
null_ctx,
'mask':
null_cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
}] if guide_scale is not None and guide_scale > 1 else {
'cond':
null_ctx,
'mask':
cont_mask,
'text_position_embeddings':
self.text_position_embeddings.pos if hasattr(
self.text_position_embeddings, 'pos') else None
},
steps=sample_steps,
show_progress=True,
seed=seed,
guide_scale=guide_scale,
guide_rescale=guide_rescale,
return_intermediate=None,
**kwargs)
if use_dynamic_model: self.dynamic_unload(self.diffusion_model,
'diffusion_model',
skip_loaded=False)
# Decode to Pixel Space
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
samples = unpack_tensor_into_imagelist(latent, x_shapes)
x_samples = self.decode_first_stage(samples)
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
'first_stage_model',
skip_loaded=False)
x_samples = [x.squeeze(0) for x in x_samples]
else:
x_samples = image
if self.refiner_module and refiner_scale > 0:
if is_txt_image:
random.shuffle(self.ace_prompt)
input_refine_prompt = [self.ace_prompt[0] + refiner_prompt if p[0] == "" else p[0] for p in prompt]
input_refine_scale = -1.
else:
input_refine_prompt = [p[0].replace("{image}", "") + " " + refiner_prompt for p in prompt]
input_refine_scale = refiner_scale
print(input_refine_prompt)
x_samples = self.refiner_module.refine(x_samples,
reverse_scale = input_refine_scale,
prompt= input_refine_prompt,
seed=seed,
use_dynamic_model=self.use_dynamic_model)
imgs = [
torch.clamp((x_i.float() + 1.0) / 2.0 + self.decoder_bias / 255,
min=0.0,
max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
for x_i in x_samples
]
imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
return imgs
def cond_stage_embeddings(self, prompt, edit_image, cont, cont_mask):
if self.use_text_pos_embeddings and not torch.sum(
self.text_position_embeddings.pos) > 0:
identifier_cont, _ = getattr(get_model(self.cond_stage_model),
'encode')(self.text_indentifers,
return_mask=True)
self.text_position_embeddings.load_state_dict(
{'pos': identifier_cont[:, 0, :]})
cont_, cont_mask_ = [], []
for pp, edit, c, cm in zip(prompt, edit_image, cont, cont_mask):
if isinstance(pp, list):
cont_.append([c[-1], *c] if len(edit) > 0 else [c[-1]])
cont_mask_.append([cm[-1], *cm] if len(edit) > 0 else [cm[-1]])
else:
raise NotImplementedError
return cont_, cont_mask_ |