Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,610 Bytes
2a00960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import re
from collections import OrderedDict
from functools import partial
import torch
import torch.nn as nn
from einops import rearrange
from torch.nn.utils.rnn import pad_sequence
from torch.utils.checkpoint import checkpoint_sequential
from scepter.modules.model.base_model import BaseModel
from scepter.modules.model.registry import BACKBONES
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.file_system import FS
from .layers import (
Mlp,
TimestepEmbedder,
PatchEmbed,
DiTACEBlock,
T2IFinalLayer
)
from .pos_embed import rope_params
@BACKBONES.register_class()
class DiTACE(BaseModel):
para_dict = {
'PATCH_SIZE': {
'value': 2,
'description': ''
},
'IN_CHANNELS': {
'value': 4,
'description': ''
},
'HIDDEN_SIZE': {
'value': 1152,
'description': ''
},
'DEPTH': {
'value': 28,
'description': ''
},
'NUM_HEADS': {
'value': 16,
'description': ''
},
'MLP_RATIO': {
'value': 4.0,
'description': ''
},
'PRED_SIGMA': {
'value': True,
'description': ''
},
'DROP_PATH': {
'value': 0.,
'description': ''
},
'WINDOW_SIZE': {
'value': 0,
'description': ''
},
'WINDOW_BLOCK_INDEXES': {
'value': None,
'description': ''
},
'Y_CHANNELS': {
'value': 4096,
'description': ''
},
'ATTENTION_BACKEND': {
'value': None,
'description': ''
},
'QK_NORM': {
'value': True,
'description': 'Whether to use RMSNorm for query and key.',
},
}
para_dict.update(BaseModel.para_dict)
def __init__(self, cfg, logger):
super().__init__(cfg, logger=logger)
self.window_block_indexes = cfg.get('WINDOW_BLOCK_INDEXES', None)
if self.window_block_indexes is None:
self.window_block_indexes = []
self.pred_sigma = cfg.get('PRED_SIGMA', True)
self.in_channels = cfg.get('IN_CHANNELS', 4)
self.out_channels = self.in_channels * 2 if self.pred_sigma else self.in_channels
self.patch_size = cfg.get('PATCH_SIZE', 2)
self.num_heads = cfg.get('NUM_HEADS', 16)
self.hidden_size = cfg.get('HIDDEN_SIZE', 1152)
self.y_channels = cfg.get('Y_CHANNELS', 4096)
self.drop_path = cfg.get('DROP_PATH', 0.)
self.depth = cfg.get('DEPTH', 28)
self.mlp_ratio = cfg.get('MLP_RATIO', 4.0)
self.use_grad_checkpoint = cfg.get('USE_GRAD_CHECKPOINT', False)
self.attention_backend = cfg.get('ATTENTION_BACKEND', None)
self.max_seq_len = cfg.get('MAX_SEQ_LEN', 1024)
self.qk_norm = cfg.get('QK_NORM', False)
self.ignore_keys = cfg.get('IGNORE_KEYS', [])
assert (self.hidden_size % self.num_heads
) == 0 and (self.hidden_size // self.num_heads) % 2 == 0
d = self.hidden_size // self.num_heads
self.freqs = torch.cat(
[
rope_params(self.max_seq_len, d - 4 * (d // 6)), # T (~1/3)
rope_params(self.max_seq_len, 2 * (d // 6)), # H (~1/3)
rope_params(self.max_seq_len, 2 * (d // 6)) # W (~1/3)
],
dim=1)
# init embedder
self.x_embedder = PatchEmbed(self.patch_size,
self.in_channels + 1,
self.hidden_size,
bias=True,
flatten=False)
self.t_embedder = TimestepEmbedder(self.hidden_size)
self.y_embedder = Mlp(in_features=self.y_channels,
hidden_features=self.hidden_size,
out_features=self.hidden_size,
act_layer=lambda: nn.GELU(approximate='tanh'),
drop=0)
self.t_block = nn.Sequential(
nn.SiLU(),
nn.Linear(self.hidden_size, 6 * self.hidden_size, bias=True))
# init blocks
drop_path = [
x.item() for x in torch.linspace(0, self.drop_path, self.depth)
]
self.blocks = nn.ModuleList([
DiTACEBlock(self.hidden_size,
self.num_heads,
mlp_ratio=self.mlp_ratio,
drop_path=drop_path[i],
window_size=self.window_size
if i in self.window_block_indexes else 0,
backend=self.attention_backend,
use_condition=True,
qk_norm=self.qk_norm) for i in range(self.depth)
])
self.final_layer = T2IFinalLayer(self.hidden_size, self.patch_size,
self.out_channels)
self.initialize_weights()
def load_pretrained_model(self, pretrained_model):
if pretrained_model:
with FS.get_from(pretrained_model, wait_finish=True) as local_path:
model = torch.load(local_path, map_location='cpu')
if 'state_dict' in model:
model = model['state_dict']
new_ckpt = OrderedDict()
for k, v in model.items():
if self.ignore_keys is not None:
if (isinstance(self.ignore_keys, str) and re.match(self.ignore_keys, k)) or \
(isinstance(self.ignore_keys, list) and k in self.ignore_keys):
continue
k = k.replace('.cross_attn.q_linear.', '.cross_attn.q.')
k = k.replace('.cross_attn.proj.',
'.cross_attn.o.').replace(
'.attn.proj.', '.attn.o.')
if '.cross_attn.kv_linear.' in k:
k_p, v_p = torch.split(v, v.shape[0] // 2)
new_ckpt[k.replace('.cross_attn.kv_linear.',
'.cross_attn.k.')] = k_p
new_ckpt[k.replace('.cross_attn.kv_linear.',
'.cross_attn.v.')] = v_p
elif '.attn.qkv.' in k:
q_p, k_p, v_p = torch.split(v, v.shape[0] // 3)
new_ckpt[k.replace('.attn.qkv.', '.attn.q.')] = q_p
new_ckpt[k.replace('.attn.qkv.', '.attn.k.')] = k_p
new_ckpt[k.replace('.attn.qkv.', '.attn.v.')] = v_p
elif 'y_embedder.y_proj.' in k:
new_ckpt[k.replace('y_embedder.y_proj.',
'y_embedder.')] = v
elif k in ('x_embedder.proj.weight'):
model_p = self.state_dict()[k]
if v.shape != model_p.shape:
model_p.zero_()
model_p[:, :4, :, :].copy_(v)
new_ckpt[k] = torch.nn.parameter.Parameter(model_p)
else:
new_ckpt[k] = v
elif k in ('x_embedder.proj.bias'):
new_ckpt[k] = v
else:
new_ckpt[k] = v
missing, unexpected = self.load_state_dict(new_ckpt,
strict=False)
print(
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys'
)
if len(missing) > 0:
print(f'Missing Keys:\n {missing}')
if len(unexpected) > 0:
print(f'\nUnexpected Keys:\n {unexpected}')
def forward(self,
x,
t=None,
cond=dict(),
mask=None,
text_position_embeddings=None,
gc_seg=-1,
**kwargs):
if self.freqs.device != x.device:
self.freqs = self.freqs.to(x.device)
if isinstance(cond, dict):
context = cond.get('crossattn', None)
else:
context = cond
if text_position_embeddings is not None:
# default use the text_position_embeddings in state_dict
# if state_dict doesn't including this key, use the arg: text_position_embeddings
proj_position_embeddings = self.y_embedder(
text_position_embeddings)
else:
proj_position_embeddings = None
ctx_batch, txt_lens = [], []
if mask is not None and isinstance(mask, list):
for ctx, ctx_mask in zip(context, mask):
for frame_id, one_ctx in enumerate(zip(ctx, ctx_mask)):
u, m = one_ctx
t_len = m.flatten().sum() # l
u = u[:t_len]
u = self.y_embedder(u)
if frame_id == 0:
u = u + proj_position_embeddings[
len(ctx) -
1] if proj_position_embeddings is not None else u
else:
u = u + proj_position_embeddings[
frame_id -
1] if proj_position_embeddings is not None else u
ctx_batch.append(u)
txt_lens.append(t_len)
else:
raise TypeError
y = torch.cat(ctx_batch, dim=0)
txt_lens = torch.LongTensor(txt_lens).to(x.device, non_blocking=True)
batch_frames = []
for u, shape, m in zip(x, cond['x_shapes'], cond['x_mask']):
u = u[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
m = torch.ones_like(u[[0], :, :]) if m is None else m.squeeze(0)
batch_frames.append([torch.cat([u, m], dim=0).unsqueeze(0)])
if 'edit' in cond:
for i, (edit, edit_mask) in enumerate(
zip(cond['edit'], cond['edit_mask'])):
if edit is None:
continue
for u, m in zip(edit, edit_mask):
u = u.squeeze(0)
m = torch.ones_like(
u[[0], :, :]) if m is None else m.squeeze(0)
batch_frames[i].append(
torch.cat([u, m], dim=0).unsqueeze(0))
patch_batch, shape_batch, self_x_len, cross_x_len = [], [], [], []
for frames in batch_frames:
patches, patch_shapes = [], []
self_x_len.append(0)
for frame_id, u in enumerate(frames):
u = self.x_embedder(u)
h, w = u.size(2), u.size(3)
u = rearrange(u, '1 c h w -> (h w) c')
if frame_id == 0:
u = u + proj_position_embeddings[
len(frames) -
1] if proj_position_embeddings is not None else u
else:
u = u + proj_position_embeddings[
frame_id -
1] if proj_position_embeddings is not None else u
patches.append(u)
patch_shapes.append([h, w])
cross_x_len.append(h * w) # b*s, 1
self_x_len[-1] += h * w # b, 1
# u = torch.cat(patches, dim=0)
patch_batch.extend(patches)
shape_batch.append(
torch.LongTensor(patch_shapes).to(x.device, non_blocking=True))
# repeat t to align with x
t = torch.cat([t[i].repeat(l) for i, l in enumerate(self_x_len)])
self_x_len, cross_x_len = (torch.LongTensor(self_x_len).to(
x.device, non_blocking=True), torch.LongTensor(cross_x_len).to(
x.device, non_blocking=True))
# x = pad_sequence(tuple(patch_batch), batch_first=True) # b, s*max(cl), c
x = torch.cat(patch_batch, dim=0)
x_shapes = pad_sequence(tuple(shape_batch),
batch_first=True) # b, max(len(frames)), 2
t = self.t_embedder(t) # (N, D)
t0 = self.t_block(t)
# y = self.y_embedder(context)
kwargs = dict(y=y,
t=t0,
x_shapes=x_shapes,
self_x_len=self_x_len,
cross_x_len=cross_x_len,
freqs=self.freqs,
txt_lens=txt_lens)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.blocks],
segments=gc_seg if gc_seg > 0 else len(self.blocks),
input=x,
use_reentrant=False)
else:
for block in self.blocks:
x = block(x, **kwargs)
x = self.final_layer(x, t) # b*s*n, d
outs, cur_length = [], 0
p = self.patch_size
for seq_length, shape in zip(self_x_len, shape_batch):
x_i = x[cur_length:cur_length + seq_length]
h, w = shape[0].tolist()
u = x_i[:h * w].view(h, w, p, p, -1)
u = rearrange(u, 'h w p q c -> (h p w q) c'
) # dump into sequence for following tensor ops
cur_length = cur_length + seq_length
outs.append(u)
x = pad_sequence(tuple(outs), batch_first=True).permute(0, 2, 1)
if self.pred_sigma:
return x.chunk(2, dim=1)[0]
else:
return x
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
# Initialize caption embedding MLP:
if hasattr(self, 'y_embedder'):
nn.init.normal_(self.y_embedder.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.fc2.weight, std=0.02)
# Zero-out adaLN modulation layers
for block in self.blocks:
nn.init.constant_(block.cross_attn.o.weight, 0)
nn.init.constant_(block.cross_attn.o.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
@property
def dtype(self):
return next(self.parameters()).dtype
@staticmethod
def get_config_template():
return dict_to_yaml('BACKBONE',
__class__.__name__,
DiTACE.para_dict,
set_name=True)
|