Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,218 Bytes
2a00960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import warnings
import torch
import torch.nn as nn
from .pos_embed import rope_apply_multires as rope_apply
try:
from flash_attn import (flash_attn_varlen_func)
FLASHATTN_IS_AVAILABLE = True
except ImportError as e:
FLASHATTN_IS_AVAILABLE = False
flash_attn_varlen_func = None
warnings.warn(f'{e}')
__all__ = [
"drop_path",
"modulate",
"PatchEmbed",
"DropPath",
"RMSNorm",
"Mlp",
"TimestepEmbedder",
"DiTEditBlock",
"MultiHeadAttentionDiTEdit",
"T2IFinalLayer",
]
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0], ) + (1, ) * (
x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(
shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
def modulate(x, shift, scale, unsqueeze=False):
if unsqueeze:
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
else:
return x * (1 + scale) + shift
class PatchEmbed(nn.Module):
""" 2D Image to Patch Embedding
"""
def __init__(
self,
patch_size=16,
in_chans=3,
embed_dim=768,
norm_layer=None,
flatten=True,
bias=True,
):
super().__init__()
self.flatten = flatten
self.proj = nn.Conv2d(in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=bias)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-6):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
return self._norm(x.float()).type_as(x) * self.weight
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) *
torch.arange(start=0, end=half, dtype=torch.float32) /
half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class DiTACEBlock(nn.Module):
def __init__(self,
hidden_size,
num_heads,
mlp_ratio=4.0,
drop_path=0.,
window_size=0,
backend=None,
use_condition=True,
qk_norm=False,
**block_kwargs):
super().__init__()
self.hidden_size = hidden_size
self.use_condition = use_condition
self.norm1 = nn.LayerNorm(hidden_size,
elementwise_affine=False,
eps=1e-6)
self.attn = MultiHeadAttention(hidden_size,
num_heads=num_heads,
qkv_bias=True,
backend=backend,
qk_norm=qk_norm,
**block_kwargs)
if self.use_condition:
self.cross_attn = MultiHeadAttention(
hidden_size,
context_dim=hidden_size,
num_heads=num_heads,
qkv_bias=True,
backend=backend,
qk_norm=qk_norm,
**block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size,
elementwise_affine=False,
eps=1e-6)
# to be compatible with lower version pytorch
approx_gelu = lambda: nn.GELU(approximate='tanh')
self.mlp = Mlp(in_features=hidden_size,
hidden_features=int(hidden_size * mlp_ratio),
act_layer=approx_gelu,
drop=0)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.window_size = window_size
self.scale_shift_table = nn.Parameter(
torch.randn(6, hidden_size) / hidden_size**0.5)
def forward(self, x, y, t, **kwargs):
B = x.size(0)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
shift_msa.squeeze(1), scale_msa.squeeze(1), gate_msa.squeeze(1),
shift_mlp.squeeze(1), scale_mlp.squeeze(1), gate_mlp.squeeze(1))
x = x + self.drop_path(gate_msa * self.attn(
modulate(self.norm1(x), shift_msa, scale_msa, unsqueeze=False), **
kwargs))
if self.use_condition:
x = x + self.cross_attn(x, context=y, **kwargs)
x = x + self.drop_path(gate_mlp * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp, unsqueeze=False)))
return x
class MultiHeadAttention(nn.Module):
def __init__(self,
dim,
context_dim=None,
num_heads=None,
head_dim=None,
attn_drop=0.0,
qkv_bias=False,
dropout=0.0,
backend=None,
qk_norm=False,
eps=1e-6,
**block_kwargs):
super().__init__()
# consider head_dim first, then num_heads
num_heads = dim // head_dim if head_dim else num_heads
head_dim = dim // num_heads
assert num_heads * head_dim == dim
context_dim = context_dim or dim
self.dim = dim
self.context_dim = context_dim
self.num_heads = num_heads
self.head_dim = head_dim
self.scale = math.pow(head_dim, -0.25)
# layers
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.k = nn.Linear(context_dim, dim, bias=qkv_bias)
self.v = nn.Linear(context_dim, dim, bias=qkv_bias)
self.o = nn.Linear(dim, dim)
self.norm_q = RMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = RMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.dropout = nn.Dropout(dropout)
self.attention_op = None
self.attn_drop = nn.Dropout(attn_drop)
self.backend = backend
assert self.backend in ('flash_attn', 'xformer_attn', 'pytorch_attn',
None)
if FLASHATTN_IS_AVAILABLE and self.backend in ('flash_attn', None):
self.backend = 'flash_attn'
self.softmax_scale = block_kwargs.get('softmax_scale', None)
self.causal = block_kwargs.get('causal', False)
self.window_size = block_kwargs.get('window_size', (-1, -1))
self.deterministic = block_kwargs.get('deterministic', False)
else:
raise NotImplementedError
def flash_attn(self, x, context=None, **kwargs):
'''
The implementation will be very slow when mask is not None,
because we need rearange the x/context features according to mask.
Args:
x:
context:
mask:
**kwargs:
Returns: x
'''
dtype = kwargs.get('dtype', torch.float16)
def half(x):
return x if x.dtype in [torch.float16, torch.bfloat16
] else x.to(dtype)
x_shapes = kwargs['x_shapes']
freqs = kwargs['freqs']
self_x_len = kwargs['self_x_len']
cross_x_len = kwargs['cross_x_len']
txt_lens = kwargs['txt_lens']
n, d = self.num_heads, self.head_dim
if context is None:
# self-attn
q = self.norm_q(self.q(x)).view(-1, n, d)
k = self.norm_q(self.k(x)).view(-1, n, d)
v = self.v(x).view(-1, n, d)
q = rope_apply(q, self_x_len, x_shapes, freqs, pad=False)
k = rope_apply(k, self_x_len, x_shapes, freqs, pad=False)
q_lens = k_lens = self_x_len
else:
# cross-attn
q = self.norm_q(self.q(x)).view(-1, n, d)
k = self.norm_q(self.k(context)).view(-1, n, d)
v = self.v(context).view(-1, n, d)
q_lens = cross_x_len
k_lens = txt_lens
cu_seqlens_q = torch.cat([q_lens.new_zeros([1]),
q_lens]).cumsum(0, dtype=torch.int32)
cu_seqlens_k = torch.cat([k_lens.new_zeros([1]),
k_lens]).cumsum(0, dtype=torch.int32)
max_seqlen_q = q_lens.max()
max_seqlen_k = k_lens.max()
out_dtype = q.dtype
q, k, v = half(q), half(k), half(v)
x = flash_attn_varlen_func(q,
k,
v,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=self.attn_drop.p,
softmax_scale=self.softmax_scale,
causal=self.causal,
window_size=self.window_size,
deterministic=self.deterministic)
x = x.type(out_dtype)
x = x.reshape(-1, n * d)
x = self.o(x)
x = self.dropout(x)
return x
def forward(self, x, context=None, **kwargs):
x = getattr(self, self.backend)(x, context=context, **kwargs)
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size,
elementwise_affine=False,
eps=1e-6)
self.linear = nn.Linear(hidden_size,
patch_size * patch_size * out_channels,
bias=True)
self.scale_shift_table = nn.Parameter(
torch.randn(2, hidden_size) / hidden_size**0.5)
self.out_channels = out_channels
def forward(self, x, t):
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2,
dim=1)
shift, scale = shift.squeeze(1), scale.squeeze(1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x |