File size: 14,218 Bytes
2a00960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import warnings
import torch
import torch.nn as nn
from .pos_embed import rope_apply_multires as rope_apply

try:
    from flash_attn import (flash_attn_varlen_func)
    FLASHATTN_IS_AVAILABLE = True
except ImportError as e:
    FLASHATTN_IS_AVAILABLE = False
    flash_attn_varlen_func = None
    warnings.warn(f'{e}')

__all__ = [
    "drop_path",
    "modulate",
    "PatchEmbed",
    "DropPath",
    "RMSNorm",
    "Mlp",
    "TimestepEmbedder",
    "DiTEditBlock",
    "MultiHeadAttentionDiTEdit",
    "T2IFinalLayer",
]

def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0], ) + (1, ) * (
        x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(
        shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


def modulate(x, shift, scale, unsqueeze=False):
    if unsqueeze:
        return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
    else:
        return x * (1 + scale) + shift
    

class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """
    def __init__(
        self,
        patch_size=16,
        in_chans=3,
        embed_dim=768,
        norm_layer=None,
        flatten=True,
        bias=True,
    ):
        super().__init__()
        self.flatten = flatten
        self.proj = nn.Conv2d(in_chans,
                              embed_dim,
                              kernel_size=patch_size,
                              stride=patch_size,
                              bias=bias)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
    

class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-6):
        super().__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        return self._norm(x.float()).type_as(x) * self.weight

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) *
            torch.arange(start=0, end=half, dtype=torch.float32) /
            half).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb
    

class DiTACEBlock(nn.Module):
    def __init__(self,
                 hidden_size,
                 num_heads,
                 mlp_ratio=4.0,
                 drop_path=0.,
                 window_size=0,
                 backend=None,
                 use_condition=True,
                 qk_norm=False,
                 **block_kwargs):
        super().__init__()
        self.hidden_size = hidden_size
        self.use_condition = use_condition
        self.norm1 = nn.LayerNorm(hidden_size,
                                  elementwise_affine=False,
                                  eps=1e-6)
        self.attn = MultiHeadAttention(hidden_size,
                                        num_heads=num_heads,
                                        qkv_bias=True,
                                        backend=backend,
                                        qk_norm=qk_norm,
                                        **block_kwargs)
        if self.use_condition:
            self.cross_attn = MultiHeadAttention(
                hidden_size,
                context_dim=hidden_size,
                num_heads=num_heads,
                qkv_bias=True,
                backend=backend,
                qk_norm=qk_norm,
                **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size,
                                  elementwise_affine=False,
                                  eps=1e-6)
        # to be compatible with lower version pytorch
        approx_gelu = lambda: nn.GELU(approximate='tanh')
        self.mlp = Mlp(in_features=hidden_size,
                       hidden_features=int(hidden_size * mlp_ratio),
                       act_layer=approx_gelu,
                       drop=0)
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
        self.window_size = window_size
        self.scale_shift_table = nn.Parameter(
            torch.randn(6, hidden_size) / hidden_size**0.5)

    def forward(self, x, y, t, **kwargs):
        B = x.size(0)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            shift_msa.squeeze(1), scale_msa.squeeze(1), gate_msa.squeeze(1),
            shift_mlp.squeeze(1), scale_mlp.squeeze(1), gate_mlp.squeeze(1))
        x = x + self.drop_path(gate_msa * self.attn(
            modulate(self.norm1(x), shift_msa, scale_msa, unsqueeze=False), **
            kwargs))
        if self.use_condition:
            x = x + self.cross_attn(x, context=y, **kwargs)

        x = x + self.drop_path(gate_mlp * self.mlp(
            modulate(self.norm2(x), shift_mlp, scale_mlp, unsqueeze=False)))
        return x


class MultiHeadAttention(nn.Module):
    def __init__(self,
                 dim,
                 context_dim=None,
                 num_heads=None,
                 head_dim=None,
                 attn_drop=0.0,
                 qkv_bias=False,
                 dropout=0.0,
                 backend=None,
                 qk_norm=False,
                 eps=1e-6,
                 **block_kwargs):
        super().__init__()
        # consider head_dim first, then num_heads
        num_heads = dim // head_dim if head_dim else num_heads
        head_dim = dim // num_heads
        assert num_heads * head_dim == dim
        context_dim = context_dim or dim
        self.dim = dim
        self.context_dim = context_dim
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.scale = math.pow(head_dim, -0.25)
        # layers
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.k = nn.Linear(context_dim, dim, bias=qkv_bias)
        self.v = nn.Linear(context_dim, dim, bias=qkv_bias)
        self.o = nn.Linear(dim, dim)
        self.norm_q = RMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
        self.norm_k = RMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

        self.dropout = nn.Dropout(dropout)
        self.attention_op = None
        self.attn_drop = nn.Dropout(attn_drop)
        self.backend = backend
        assert self.backend in ('flash_attn', 'xformer_attn', 'pytorch_attn',
                                None)
        if FLASHATTN_IS_AVAILABLE and self.backend in ('flash_attn', None):
            self.backend = 'flash_attn'
            self.softmax_scale = block_kwargs.get('softmax_scale', None)
            self.causal = block_kwargs.get('causal', False)
            self.window_size = block_kwargs.get('window_size', (-1, -1))
            self.deterministic = block_kwargs.get('deterministic', False)
        else:
            raise NotImplementedError

    def flash_attn(self, x, context=None, **kwargs):
        '''
         The implementation will be very slow when mask is not None,
         because we need rearange the x/context features according to mask.
        Args:
            x:
            context:
            mask:
            **kwargs:
        Returns: x
        '''
        dtype = kwargs.get('dtype', torch.float16)

        def half(x):
            return x if x.dtype in [torch.float16, torch.bfloat16
                                    ] else x.to(dtype)

        x_shapes = kwargs['x_shapes']
        freqs = kwargs['freqs']
        self_x_len = kwargs['self_x_len']
        cross_x_len = kwargs['cross_x_len']
        txt_lens = kwargs['txt_lens']
        n, d = self.num_heads, self.head_dim

        if context is None:
            # self-attn
            q = self.norm_q(self.q(x)).view(-1, n, d)
            k = self.norm_q(self.k(x)).view(-1, n, d)
            v = self.v(x).view(-1, n, d)
            q = rope_apply(q, self_x_len, x_shapes, freqs, pad=False)
            k = rope_apply(k, self_x_len, x_shapes, freqs, pad=False)
            q_lens = k_lens = self_x_len
        else:
            # cross-attn
            q = self.norm_q(self.q(x)).view(-1, n, d)
            k = self.norm_q(self.k(context)).view(-1, n, d)
            v = self.v(context).view(-1, n, d)
            q_lens = cross_x_len
            k_lens = txt_lens

        cu_seqlens_q = torch.cat([q_lens.new_zeros([1]),
                                  q_lens]).cumsum(0, dtype=torch.int32)
        cu_seqlens_k = torch.cat([k_lens.new_zeros([1]),
                                  k_lens]).cumsum(0, dtype=torch.int32)
        max_seqlen_q = q_lens.max()
        max_seqlen_k = k_lens.max()

        out_dtype = q.dtype
        q, k, v = half(q), half(k), half(v)
        x = flash_attn_varlen_func(q,
                                   k,
                                   v,
                                   cu_seqlens_q=cu_seqlens_q,
                                   cu_seqlens_k=cu_seqlens_k,
                                   max_seqlen_q=max_seqlen_q,
                                   max_seqlen_k=max_seqlen_k,
                                   dropout_p=self.attn_drop.p,
                                   softmax_scale=self.softmax_scale,
                                   causal=self.causal,
                                   window_size=self.window_size,
                                   deterministic=self.deterministic)

        x = x.type(out_dtype)
        x = x.reshape(-1, n * d)
        x = self.o(x)
        x = self.dropout(x)
        return x

    def forward(self, x, context=None, **kwargs):
        x = getattr(self, self.backend)(x, context=context, **kwargs)
        return x


class T2IFinalLayer(nn.Module):
    """
    The final layer of PixArt.
    """
    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size,
                                       elementwise_affine=False,
                                       eps=1e-6)
        self.linear = nn.Linear(hidden_size,
                                patch_size * patch_size * out_channels,
                                bias=True)
        self.scale_shift_table = nn.Parameter(
            torch.randn(2, hidden_size) / hidden_size**0.5)
        self.out_channels = out_channels

    def forward(self, x, t):
        shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2,
                                                                         dim=1)
        shift, scale = shift.squeeze(1), scale.squeeze(1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x