Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,754 Bytes
2a00960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import warnings
from contextlib import nullcontext
import torch
import torch.nn.functional as F
import torch.utils.dlpack
from scepter.modules.model.embedder.base_embedder import BaseEmbedder
from scepter.modules.model.registry import EMBEDDERS
from scepter.modules.model.tokenizer.tokenizer_component import (
basic_clean, canonicalize, heavy_clean, whitespace_clean)
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
try:
from transformers import AutoTokenizer, T5EncoderModel
except Exception as e:
warnings.warn(
f'Import transformers error, please deal with this problem: {e}')
@EMBEDDERS.register_class()
class ACETextEmbedder(BaseEmbedder):
"""
Uses the OpenCLIP transformer encoder for text
"""
"""
Uses the OpenCLIP transformer encoder for text
"""
para_dict = {
'PRETRAINED_MODEL': {
'value':
'google/umt5-small',
'description':
'Pretrained Model for umt5, modelcard path or local path.'
},
'TOKENIZER_PATH': {
'value': 'google/umt5-small',
'description':
'Tokenizer Path for umt5, modelcard path or local path.'
},
'FREEZE': {
'value': True,
'description': ''
},
'USE_GRAD': {
'value': False,
'description': 'Compute grad or not.'
},
'CLEAN': {
'value':
'whitespace',
'description':
'Set the clean strtegy for tokenizer, used when TOKENIZER_PATH is not None.'
},
'LAYER': {
'value': 'last',
'description': ''
},
'LEGACY': {
'value':
True,
'description':
'Whether use legacy returnd feature or not ,default True.'
}
}
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
pretrained_path = cfg.get('PRETRAINED_MODEL', None)
self.t5_dtype = cfg.get('T5_DTYPE', 'float32')
assert pretrained_path
with FS.get_dir_to_local_dir(pretrained_path,
wait_finish=True) as local_path:
self.model = T5EncoderModel.from_pretrained(
local_path,
torch_dtype=getattr(
torch,
'float' if self.t5_dtype == 'float32' else self.t5_dtype))
tokenizer_path = cfg.get('TOKENIZER_PATH', None)
self.length = cfg.get('LENGTH', 77)
self.use_grad = cfg.get('USE_GRAD', False)
self.clean = cfg.get('CLEAN', 'whitespace')
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
if tokenizer_path:
self.tokenize_kargs = {'return_tensors': 'pt'}
with FS.get_dir_to_local_dir(tokenizer_path,
wait_finish=True) as local_path:
if self.added_identifier is not None and isinstance(
self.added_identifier, list):
self.tokenizer = AutoTokenizer.from_pretrained(local_path)
else:
self.tokenizer = AutoTokenizer.from_pretrained(local_path)
if self.length is not None:
self.tokenize_kargs.update({
'padding': 'max_length',
'truncation': True,
'max_length': self.length
})
self.eos_token = self.tokenizer(
self.tokenizer.eos_token)['input_ids'][0]
else:
self.tokenizer = None
self.tokenize_kargs = {}
self.use_grad = cfg.get('USE_GRAD', False)
self.clean = cfg.get('CLEAN', 'whitespace')
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
# encode && encode_text
def forward(self, tokens, return_mask=False, use_mask=True):
# tokenization
embedding_context = nullcontext if self.use_grad else torch.no_grad
with embedding_context():
if use_mask:
x = self.model(tokens.input_ids.to(we.device_id),
tokens.attention_mask.to(we.device_id))
else:
x = self.model(tokens.input_ids.to(we.device_id))
x = x.last_hidden_state
if return_mask:
return x.detach() + 0.0, tokens.attention_mask.to(we.device_id)
else:
return x.detach() + 0.0, None
def _clean(self, text):
if self.clean == 'whitespace':
text = whitespace_clean(basic_clean(text))
elif self.clean == 'lower':
text = whitespace_clean(basic_clean(text)).lower()
elif self.clean == 'canonicalize':
text = canonicalize(basic_clean(text))
elif self.clean == 'heavy':
text = heavy_clean(basic_clean(text))
return text
def encode(self, text, return_mask=False, use_mask=True):
if isinstance(text, str):
text = [text]
if self.clean:
text = [self._clean(u) for u in text]
assert self.tokenizer is not None
cont, mask = [], []
with torch.autocast(device_type='cuda',
enabled=self.t5_dtype in ('float16', 'bfloat16'),
dtype=getattr(torch, self.t5_dtype)):
for tt in text:
tokens = self.tokenizer([tt], **self.tokenize_kargs)
one_cont, one_mask = self(tokens,
return_mask=return_mask,
use_mask=use_mask)
cont.append(one_cont)
mask.append(one_mask)
if return_mask:
return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
else:
return torch.cat(cont, dim=0)
def encode_list(self, text_list, return_mask=True):
cont_list = []
mask_list = []
for pp in text_list:
cont, cont_mask = self.encode(pp, return_mask=return_mask)
cont_list.append(cont)
mask_list.append(cont_mask)
if return_mask:
return cont_list, mask_list
else:
return cont_list
@staticmethod
def get_config_template():
return dict_to_yaml('MODELS',
__class__.__name__,
ACETextEmbedder.para_dict,
set_name=True) |