File size: 8,314 Bytes
2a00960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import os
from collections import OrderedDict

import torch
from tqdm import trange

from scepter.modules.model.registry import (DIFFUSION_SAMPLERS, DIFFUSIONS,
                                            NOISE_SCHEDULERS)
from scepter.modules.utils.config import Config, dict_to_yaml
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS


@DIFFUSIONS.register_class()
class ACEDiffusion(object):
    para_dict = {
        'NOISE_SCHEDULER': {},
        'SAMPLER_SCHEDULER': {},
        'MIN_SNR_GAMMA': {
            'value': None,
            'description': 'The minimum SNR gamma value for the loss function.'
        },
        'PREDICTION_TYPE': {
            'value': 'eps',
            'description':
            'The type of prediction to use for the loss function.'
        }
    }

    def __init__(self, cfg, logger=None):
        super(ACEDiffusion, self).__init__()
        self.logger = logger
        self.cfg = cfg
        self.init_params()

    def init_params(self):
        self.min_snr_gamma = self.cfg.get('MIN_SNR_GAMMA', None)
        self.prediction_type = self.cfg.get('PREDICTION_TYPE', 'eps')
        self.noise_scheduler = NOISE_SCHEDULERS.build(self.cfg.NOISE_SCHEDULER,
                                                      logger=self.logger)
        self.sampler_scheduler = NOISE_SCHEDULERS.build(self.cfg.get(
            'SAMPLER_SCHEDULER', self.cfg.NOISE_SCHEDULER),
                                                        logger=self.logger)
        self.num_timesteps = self.noise_scheduler.num_timesteps
        if self.cfg.have('WORK_DIR') and we.rank == 0:
            schedule_visualization = os.path.join(self.cfg.WORK_DIR,
                                                  'noise_schedule.png')
            with FS.put_to(schedule_visualization) as local_path:
                self.noise_scheduler.plot_noise_sampling_map(local_path)
            schedule_visualization = os.path.join(self.cfg.WORK_DIR,
                                                  'sampler_schedule.png')
            with FS.put_to(schedule_visualization) as local_path:
                self.sampler_scheduler.plot_noise_sampling_map(local_path)

    def sample(self,
               noise,
               model,
               model_kwargs={},
               steps=20,
               sampler=None,
               use_dynamic_cfg=False,
               guide_scale=None,
               guide_rescale=None,
               show_progress=False,
               return_intermediate=None,
               intermediate_callback=None,
               **kwargs):
        assert isinstance(steps, (int, torch.LongTensor))
        assert return_intermediate in (None, 'x0', 'xt')
        assert isinstance(sampler, (str, dict, Config))
        intermediates = []

        def callback_fn(x_t, t, sigma=None, alpha=None):
            timestamp = t
            t = t.repeat(len(x_t)).round().long().to(x_t.device)
            sigma = sigma.repeat(len(x_t), *([1] * (len(sigma.shape) - 1)))
            alpha = alpha.repeat(len(x_t), *([1] * (len(alpha.shape) - 1)))

            if guide_scale is None or guide_scale == 1.0:
                out = model(x=x_t, t=t, **model_kwargs)
            else:
                if use_dynamic_cfg:
                    guidance_scale = 1 + guide_scale * (
                        (1 - math.cos(math.pi * (
                            (steps - timestamp.item()) / steps)**5.0)) / 2)
                else:
                    guidance_scale = guide_scale
                y_out = model(x=x_t, t=t, **model_kwargs[0])
                u_out = model(x=x_t, t=t, **model_kwargs[1])
                out = u_out + guidance_scale * (y_out - u_out)
            if guide_rescale is not None and guide_rescale > 0.0:
                ratio = (
                    y_out.flatten(1).std(dim=1) /
                    (out.flatten(1).std(dim=1) + 1e-12)).view((-1, ) + (1, ) *
                                                              (y_out.ndim - 1))
                out *= guide_rescale * ratio + (1 - guide_rescale) * 1.0

            if self.prediction_type == 'x0':
                x0 = out
            elif self.prediction_type == 'eps':
                x0 = (x_t - sigma * out) / alpha
            elif self.prediction_type == 'v':
                x0 = alpha * x_t - sigma * out
            else:
                raise NotImplementedError(
                    f'prediction_type {self.prediction_type} not implemented')

            return x0

        sampler_ins = self.get_sampler(sampler)

        # this is ignored for schnell
        sampler_output = sampler_ins.preprare_sampler(
            noise,
            steps=steps,
            prediction_type=self.prediction_type,
            scheduler_ins=self.sampler_scheduler,
            callback_fn=callback_fn)

        for _ in trange(steps, disable=not show_progress):
            trange.desc = sampler_output.msg
            sampler_output = sampler_ins.step(sampler_output)
            if return_intermediate == 'x_0':
                intermediates.append(sampler_output.x_0)
            elif return_intermediate == 'x_t':
                intermediates.append(sampler_output.x_t)
            if intermediate_callback is not None:
                intermediate_callback(intermediates[-1])
        return (sampler_output.x_0, intermediates
                ) if return_intermediate is not None else sampler_output.x_0

    def loss(self,
             x_0,
             model,
             model_kwargs={},
             reduction='mean',
             noise=None,
             **kwargs):
        # use noise scheduler to add noise
        if noise is None:
            noise = torch.randn_like(x_0)
        schedule_output = self.noise_scheduler.add_noise(x_0, noise, **kwargs)
        x_t, t, sigma, alpha = schedule_output.x_t, schedule_output.t, schedule_output.sigma, schedule_output.alpha
        out = model(x=x_t, t=t, **model_kwargs)

        # mse loss
        target = {
            'eps': noise,
            'x0': x_0,
            'v': alpha * noise - sigma * x_0
        }[self.prediction_type]

        loss = (out - target).pow(2)
        if reduction == 'mean':
            loss = loss.flatten(1).mean(dim=1)

        if self.min_snr_gamma is not None:
            alphas = self.noise_scheduler.alphas.to(x_0.device)[t]
            sigmas = self.noise_scheduler.sigmas.pow(2).to(x_0.device)[t]
            snrs = (alphas / sigmas).clamp(min=1e-20)
            min_snrs = snrs.clamp(max=self.min_snr_gamma)
            weights = min_snrs / snrs
        else:
            weights = 1

        loss = loss * weights
        return loss

    def get_sampler(self, sampler):
        if isinstance(sampler, str):
            if sampler not in DIFFUSION_SAMPLERS.class_map:
                if self.logger is not None:
                    self.logger.info(
                        f'{sampler} not in the defined samplers list {DIFFUSION_SAMPLERS.class_map.keys()}'
                    )
                else:
                    print(
                        f'{sampler} not in the defined samplers list {DIFFUSION_SAMPLERS.class_map.keys()}'
                    )
                return None
            sampler_cfg = Config(cfg_dict={'NAME': sampler}, load=False)
            sampler_ins = DIFFUSION_SAMPLERS.build(sampler_cfg,
                                                   logger=self.logger)
        elif isinstance(sampler, (Config, dict, OrderedDict)):
            if isinstance(sampler, (dict, OrderedDict)):
                sampler = Config(
                    cfg_dict={k.upper(): v
                              for k, v in dict(sampler).items()},
                    load=False)
            sampler_ins = DIFFUSION_SAMPLERS.build(sampler, logger=self.logger)
        else:
            raise NotImplementedError
        return sampler_ins

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}' + ' ' + super().__repr__()

    @staticmethod
    def get_config_template():
        return dict_to_yaml('DIFFUSIONS',
                            __class__.__name__,
                            ACEDiffusion.para_dict,
                            set_name=True)