File size: 14,512 Bytes
0d206f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import os
import random
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import torchvision.transforms as T
from scepter.modules.model.registry import DIFFUSIONS, BACKBONES
import torchvision.transforms.functional as TF
from scepter.modules.model.utils.basic_utils import check_list_of_list
from scepter.modules.model.utils.basic_utils import \
    pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor
from scepter.modules.model.utils.basic_utils import (
    to_device, unpack_tensor_into_imagelist)
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
from scepter.modules.utils.logger import get_logger
from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model

def process_edit_image(images,
                       masks,
                       tasks):

    if not isinstance(images, list):
        images = [images]
    if not isinstance(masks, list):
        masks = [masks]
    if not isinstance(tasks, list):
        tasks = [tasks]

    img_tensors = []
    mask_tensors = []
    for img, mask, task in zip(images, masks, tasks):
        if mask is None or mask == '':
            mask = Image.new('L', img.size, 0)
        img = TF.center_crop(img, [512, 512])
        mask = TF.center_crop(mask, [512, 512])

        mask = np.asarray(mask)
        mask = np.where(mask > 128, 1, 0)
        mask = mask.astype(
            np.float32) if np.any(mask) else np.ones_like(mask).astype(
                np.float32)

        img_tensor = TF.to_tensor(img).to(we.device_id)
        img_tensor = TF.normalize(img_tensor,
                                  mean=[0.5, 0.5, 0.5],
                                  std=[0.5, 0.5, 0.5])
        mask_tensor = TF.to_tensor(mask).to(we.device_id)
        if task in ['inpainting', 'Try On', 'Inpainting']:
            mask_indicator = mask_tensor.repeat(3, 1, 1)
            img_tensor[mask_indicator == 1] = -1.0
        img_tensors.append(img_tensor)
        mask_tensors.append(mask_tensor)
    return img_tensors, mask_tensors

class FluxACEInference(DiffusionInference):

    def __init__(self, logger=None):
        if logger is None:
            logger = get_logger(name='scepter')
        self.logger = logger
        self.loaded_model = {}
        self.loaded_model_name = [
            'diffusion_model', 'first_stage_model', 'cond_stage_model', 'ref_cond_stage_model'
        ]

    def init_from_cfg(self, cfg):
        self.name = cfg.NAME
        self.is_default = cfg.get('IS_DEFAULT', False)
        self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
        module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
        assert cfg.have('MODEL')
        self.size_factor = cfg.get('SIZE_FACTOR', 8)
        self.diffusion_model = self.infer_model(
            cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
                'DIFFUSION_MODEL',
                None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
        self.first_stage_model = self.infer_model(
            cfg.MODEL.FIRST_STAGE_MODEL,
            module_paras.get(
                'FIRST_STAGE_MODEL',
                None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
        self.cond_stage_model = self.infer_model(
            cfg.MODEL.COND_STAGE_MODEL,
            module_paras.get(
                'COND_STAGE_MODEL',
                None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None

        self.ref_cond_stage_model = self.infer_model(
            cfg.MODEL.REF_COND_STAGE_MODEL,
            module_paras.get(
                'REF_COND_STAGE_MODEL',
                None)) if cfg.MODEL.have('REF_COND_STAGE_MODEL') else None

        self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
                                          logger=self.logger)
        self.interpolate_func = lambda x: (F.interpolate(
            x.unsqueeze(0),
            scale_factor=1 / self.size_factor,
            mode='nearest-exact') if x is not None else None)

        self.max_seq_length = cfg.get("MAX_SEQ_LENGTH", 4096)
        if not self.use_dynamic_model:
            self.dynamic_load(self.first_stage_model, 'first_stage_model')
            self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
            if self.ref_cond_stage_model is not None: self.dynamic_load(self.ref_cond_stage_model, 'ref_cond_stage_model')
            with torch.device("meta"):
                pretrained_model = self.diffusion_model['cfg'].PRETRAINED_MODEL
                self.diffusion_model['cfg'].PRETRAINED_MODEL = None
                diffusers_lora = self.diffusion_model['cfg'].get("DIFFUSERS_LORA_MODEL", None)
                self.diffusion_model['cfg'].DIFFUSERS_LORA_MODEL = None
                swift_lora = self.diffusion_model['cfg'].get("SWIFT_LORA_MODEL", None)
                self.diffusion_model['cfg'].SWIFT_LORA_MODEL = None
                pretrain_adapter = self.diffusion_model['cfg'].get("PRETRAIN_ADAPTER", None)
                self.diffusion_model['cfg'].PRETRAIN_ADAPTER = None
                blackforest_lora = self.diffusion_model['cfg'].get("BLACKFOREST_LORA_MODEL", None)
                self.diffusion_model['cfg'].BLACKFOREST_LORA_MODEL = None
                self.diffusion_model['model'] = BACKBONES.build(self.diffusion_model['cfg'], logger=self.logger).eval()
            # self.dynamic_load(self.diffusion_model, 'diffusion_model')
            self.diffusion_model['model'].lora_model = diffusers_lora
            self.diffusion_model['model'].swift_lora_model = swift_lora
            self.diffusion_model['model'].pretrain_adapter = pretrain_adapter
            self.diffusion_model['model'].blackforest_lora_model = blackforest_lora
            self.diffusion_model['model'].load_pretrained_model(pretrained_model)
            self.diffusion_model['device'] = we.device_id

    def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
        c, H, W = image.shape
        scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
        rH = int(H * scale) // 16 * 16  # ensure divisible by self.d
        rW = int(W * scale) // 16 * 16
        image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
        return image


    @torch.no_grad()
    def encode_first_stage(self, x, **kwargs):
        _, dtype = self.get_function_info(self.first_stage_model, 'encode')
        with torch.autocast('cuda',
                            enabled=dtype in ('float16', 'bfloat16'),
                            dtype=getattr(torch, dtype)):
            def run_one_image(u):
                zu = get_model(self.first_stage_model).encode(u)
                if isinstance(zu, (tuple, list)):
                    zu = zu[0]
                return zu

            z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x]
            return z


    @torch.no_grad()
    def decode_first_stage(self, z):
        _, dtype = self.get_function_info(self.first_stage_model, 'decode')
        with torch.autocast('cuda',
                            enabled=dtype in ('float16', 'bfloat16'),
                            dtype=getattr(torch, dtype)):
            return [get_model(self.first_stage_model).decode(zu) for zu in z]

    def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
        noise = torch.randn(
            num_samples,
            16,
            # allow for packing
            2 * math.ceil(h / 16),
            2 * math.ceil(w / 16),
            device="cpu",
            dtype=dtype,
            generator=torch.Generator().manual_seed(seed),
        ).to(device)
        return noise

    @torch.no_grad()
    def __call__(self,
                 image=None,
                 mask=None,
                 prompt='',
                 task=None,
                 negative_prompt='',
                 output_height=1024,
                 output_width=1024,
                 sampler='flow_euler',
                 sample_steps=20,
                 guide_scale=3.5,
                 seed=-1,
                 history_io=None,
                 tar_index=0,
                 # align=0,
                 **kwargs):
        input_image, input_mask = image, mask
        seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
        if input_image is not None:
            # assert isinstance(input_image, list) and isinstance(input_mask, list)
            if task is None:
                task = [''] * len(input_image)
            if not isinstance(prompt, list):
                prompt = [prompt] * len(input_image)
            prompt = [
                pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
                for i, pp in enumerate(prompt)
            ]
            edit_image, edit_image_mask = process_edit_image(
                input_image, input_mask, task)
            image = torch.zeros(
                size=[3, int(output_height),
                      int(output_width)])
            image_mask = torch.ones(
                size=[1, int(output_height),
                      int(output_width)])
            edit_image, edit_image_mask = [edit_image], [edit_image_mask]
        else:
            edit_image = edit_image_mask = [[]]
            image = torch.zeros(
                size=[3, int(output_height),
                      int(output_width)])
            image_mask = torch.ones(
                size=[1, int(output_height),
                      int(output_width)])
            if not isinstance(prompt, list):
                prompt = [prompt]
        align = 0
        image, image_mask, prompt = [image], [image_mask], [prompt],
        align = [align for p in prompt] if isinstance(align, int) else align

        assert check_list_of_list(prompt) and check_list_of_list(
            edit_image) and check_list_of_list(edit_image_mask)
        # negative prompt is not used
        image = to_device(image)
        ctx = {}
        # Get Noise Shape
        self.dynamic_load(self.first_stage_model, 'first_stage_model')
        x = self.encode_first_stage(image)
        self.dynamic_unload(self.first_stage_model,
                            'first_stage_model',
                            skip_loaded=not self.use_dynamic_model)

        g = torch.Generator(device=we.device_id).manual_seed(seed)
        noise = [
            torch.randn((1, 16, i.shape[2], i.shape[3]), device=we.device_id, dtype=torch.bfloat16).normal_(generator=g)
            for i in x
        ]
        # import pdb;pdb.set_trace()
        noise, x_shapes = pack_imagelist_into_tensor(noise)
        ctx['x_shapes'] = x_shapes
        ctx['align'] = align

        image_mask = to_device(image_mask, strict=False)
        cond_mask = [self.interpolate_func(i) for i in image_mask
                     ] if image_mask is not None else [None] * len(image)
        ctx['x_mask'] = cond_mask
        # Encode Prompt
        instruction_prompt = [[pp[-1]] if "{image}" in pp[-1] else ["{image} " + pp[-1]] for pp in prompt]
        self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
        function_name, dtype = self.get_function_info(self.cond_stage_model)
        cont = getattr(get_model(self.cond_stage_model), function_name)(instruction_prompt)
        cont["context"] = [ct[-1] for ct in cont["context"]]
        cont["y"] = [ct[-1] for ct in cont["y"]]
        self.dynamic_unload(self.cond_stage_model,
                            'cond_stage_model',
                            skip_loaded=not self.use_dynamic_model)
        ctx.update(cont)

        # Encode Edit Images
        self.dynamic_load(self.first_stage_model, 'first_stage_model')
        edit_image = [to_device(i, strict=False) for i in edit_image]
        edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
        e_img, e_mask = [], []
        for u, m in zip(edit_image, edit_image_mask):
            if u is None:
                continue
            if m is None:
                m = [None] * len(u)
            e_img.append(self.encode_first_stage(u, **kwargs))
            e_mask.append([self.interpolate_func(i) for i in m])
        self.dynamic_unload(self.first_stage_model,
                            'first_stage_model',
                            skip_loaded=not self.use_dynamic_model)
        ctx['edit'] = e_img
        ctx['edit_mask'] = e_mask
        # Encode Ref Images
        if guide_scale is not None:
            guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device, dtype=noise.dtype)
        else:
            guide_scale = None

        # Diffusion Process
        self.dynamic_load(self.diffusion_model, 'diffusion_model')
        function_name, dtype = self.get_function_info(self.diffusion_model)
        with torch.autocast('cuda',
                            enabled=dtype in ('float16', 'bfloat16'),
                            dtype=getattr(torch, dtype)):
            latent = self.diffusion.sample(
                noise=noise,
                sampler=sampler,
                model=get_model(self.diffusion_model),
                model_kwargs={
                    "cond": ctx, "guidance": guide_scale, "gc_seg": -1
                },
                steps=sample_steps,
                show_progress=True,
                guide_scale=guide_scale,
                return_intermediate=None,
                reverse_scale=-1,
                **kwargs).float()
        if self.use_dynamic_model: self.dynamic_unload(self.diffusion_model,
                            'diffusion_model',
                            skip_loaded=not self.use_dynamic_model)

        # Decode to Pixel Space
        self.dynamic_load(self.first_stage_model, 'first_stage_model')
        samples = unpack_tensor_into_imagelist(latent, x_shapes)
        x_samples = self.decode_first_stage(samples)
        self.dynamic_unload(self.first_stage_model,
                            'first_stage_model',
                            skip_loaded=not self.use_dynamic_model)
        x_samples = [x.squeeze(0) for x in x_samples]

        imgs = [
            torch.clamp((x_i.float() + 1.0) / 2.0,
                        min=0.0,
                        max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
            for x_i in x_samples
        ]
        imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
        return imgs