Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import math | |
from collections import OrderedDict | |
from functools import partial | |
import warnings | |
from contextlib import nullcontext | |
import torch | |
from einops import rearrange, repeat | |
from scepter.modules.model.base_model import BaseModel | |
from scepter.modules.model.registry import BACKBONES | |
from scepter.modules.utils.config import dict_to_yaml | |
from scepter.modules.utils.distribute import we | |
from scepter.modules.utils.file_system import FS | |
from torch import Tensor, nn | |
from torch.nn.utils.rnn import pad_sequence | |
from torch.utils.checkpoint import checkpoint_sequential | |
import torch.nn.functional as F | |
import torch.utils.dlpack | |
import transformers | |
from scepter.modules.model.embedder.base_embedder import BaseEmbedder | |
from scepter.modules.model.registry import EMBEDDERS | |
from scepter.modules.model.tokenizer.tokenizer_component import ( | |
basic_clean, canonicalize, heavy_clean, whitespace_clean) | |
try: | |
from transformers import AutoTokenizer, T5EncoderModel | |
except Exception as e: | |
warnings.warn( | |
f'Import transformers error, please deal with this problem: {e}') | |
from .layers import (DoubleStreamBlock, EmbedND, LastLayer, | |
MLPEmbedder, SingleStreamBlock, | |
timestep_embedding) | |
class ACETextEmbedder(BaseEmbedder): | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
para_dict = { | |
'PRETRAINED_MODEL': { | |
'value': | |
'google/umt5-small', | |
'description': | |
'Pretrained Model for umt5, modelcard path or local path.' | |
}, | |
'TOKENIZER_PATH': { | |
'value': 'google/umt5-small', | |
'description': | |
'Tokenizer Path for umt5, modelcard path or local path.' | |
}, | |
'FREEZE': { | |
'value': True, | |
'description': '' | |
}, | |
'USE_GRAD': { | |
'value': False, | |
'description': 'Compute grad or not.' | |
}, | |
'CLEAN': { | |
'value': | |
'whitespace', | |
'description': | |
'Set the clean strtegy for tokenizer, used when TOKENIZER_PATH is not None.' | |
}, | |
'LAYER': { | |
'value': 'last', | |
'description': '' | |
}, | |
'LEGACY': { | |
'value': | |
True, | |
'description': | |
'Whether use legacy returnd feature or not ,default True.' | |
} | |
} | |
def __init__(self, cfg, logger=None): | |
super().__init__(cfg, logger=logger) | |
pretrained_path = cfg.get('PRETRAINED_MODEL', None) | |
self.t5_dtype = cfg.get('T5_DTYPE', 'float32') | |
assert pretrained_path | |
with FS.get_dir_to_local_dir(pretrained_path, | |
wait_finish=True) as local_path: | |
self.model = T5EncoderModel.from_pretrained( | |
local_path, | |
torch_dtype=getattr( | |
torch, | |
'float' if self.t5_dtype == 'float32' else self.t5_dtype)) | |
tokenizer_path = cfg.get('TOKENIZER_PATH', None) | |
self.length = cfg.get('LENGTH', 77) | |
self.use_grad = cfg.get('USE_GRAD', False) | |
self.clean = cfg.get('CLEAN', 'whitespace') | |
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None) | |
if tokenizer_path: | |
self.tokenize_kargs = {'return_tensors': 'pt'} | |
with FS.get_dir_to_local_dir(tokenizer_path, | |
wait_finish=True) as local_path: | |
if self.added_identifier is not None and isinstance( | |
self.added_identifier, list): | |
self.tokenizer = AutoTokenizer.from_pretrained(local_path) | |
else: | |
self.tokenizer = AutoTokenizer.from_pretrained(local_path) | |
if self.length is not None: | |
self.tokenize_kargs.update({ | |
'padding': 'max_length', | |
'truncation': True, | |
'max_length': self.length | |
}) | |
self.eos_token = self.tokenizer( | |
self.tokenizer.eos_token)['input_ids'][0] | |
else: | |
self.tokenizer = None | |
self.tokenize_kargs = {} | |
self.use_grad = cfg.get('USE_GRAD', False) | |
self.clean = cfg.get('CLEAN', 'whitespace') | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
# encode && encode_text | |
def forward(self, tokens, return_mask=False, use_mask=True): | |
# tokenization | |
embedding_context = nullcontext if self.use_grad else torch.no_grad | |
with embedding_context(): | |
if use_mask: | |
x = self.model(tokens.input_ids.to(we.device_id), | |
tokens.attention_mask.to(we.device_id)) | |
else: | |
x = self.model(tokens.input_ids.to(we.device_id)) | |
x = x.last_hidden_state | |
if return_mask: | |
return x.detach() + 0.0, tokens.attention_mask.to(we.device_id) | |
else: | |
return x.detach() + 0.0, None | |
def _clean(self, text): | |
if self.clean == 'whitespace': | |
text = whitespace_clean(basic_clean(text)) | |
elif self.clean == 'lower': | |
text = whitespace_clean(basic_clean(text)).lower() | |
elif self.clean == 'canonicalize': | |
text = canonicalize(basic_clean(text)) | |
elif self.clean == 'heavy': | |
text = heavy_clean(basic_clean(text)) | |
return text | |
def encode(self, text, return_mask=False, use_mask=True): | |
if isinstance(text, str): | |
text = [text] | |
if self.clean: | |
text = [self._clean(u) for u in text] | |
assert self.tokenizer is not None | |
cont, mask = [], [] | |
with torch.autocast(device_type='cuda', | |
enabled=self.t5_dtype in ('float16', 'bfloat16'), | |
dtype=getattr(torch, self.t5_dtype)): | |
for tt in text: | |
tokens = self.tokenizer([tt], **self.tokenize_kargs) | |
one_cont, one_mask = self(tokens, | |
return_mask=return_mask, | |
use_mask=use_mask) | |
cont.append(one_cont) | |
mask.append(one_mask) | |
if return_mask: | |
return torch.cat(cont, dim=0), torch.cat(mask, dim=0) | |
else: | |
return torch.cat(cont, dim=0) | |
def encode_list(self, text_list, return_mask=True): | |
cont_list = [] | |
mask_list = [] | |
for pp in text_list: | |
cont, cont_mask = self.encode(pp, return_mask=return_mask) | |
cont_list.append(cont) | |
mask_list.append(cont_mask) | |
if return_mask: | |
return cont_list, mask_list | |
else: | |
return cont_list | |
def get_config_template(): | |
return dict_to_yaml('MODELS', | |
__class__.__name__, | |
ACETextEmbedder.para_dict, | |
set_name=True) | |
class ACEHFEmbedder(BaseEmbedder): | |
para_dict = { | |
"HF_MODEL_CLS": { | |
"value": None, | |
"description": "huggingface cls in transfomer" | |
}, | |
"MODEL_PATH": { | |
"value": None, | |
"description": "model folder path" | |
}, | |
"HF_TOKENIZER_CLS": { | |
"value": None, | |
"description": "huggingface cls in transfomer" | |
}, | |
"TOKENIZER_PATH": { | |
"value": None, | |
"description": "tokenizer folder path" | |
}, | |
"MAX_LENGTH": { | |
"value": 77, | |
"description": "max length of input" | |
}, | |
"OUTPUT_KEY": { | |
"value": "last_hidden_state", | |
"description": "output key" | |
}, | |
"D_TYPE": { | |
"value": "float", | |
"description": "dtype" | |
}, | |
"BATCH_INFER": { | |
"value": False, | |
"description": "batch infer" | |
} | |
} | |
para_dict.update(BaseEmbedder.para_dict) | |
def __init__(self, cfg, logger=None): | |
super().__init__(cfg, logger=logger) | |
hf_model_cls = cfg.get('HF_MODEL_CLS', None) | |
model_path = cfg.get("MODEL_PATH", None) | |
hf_tokenizer_cls = cfg.get('HF_TOKENIZER_CLS', None) | |
tokenizer_path = cfg.get('TOKENIZER_PATH', None) | |
self.max_length = cfg.get('MAX_LENGTH', 77) | |
self.output_key = cfg.get("OUTPUT_KEY", "last_hidden_state") | |
self.d_type = cfg.get("D_TYPE", "float") | |
self.clean = cfg.get("CLEAN", "whitespace") | |
self.batch_infer = cfg.get("BATCH_INFER", False) | |
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None) | |
torch_dtype = getattr(torch, self.d_type) | |
assert hf_model_cls is not None and hf_tokenizer_cls is not None | |
assert model_path is not None and tokenizer_path is not None | |
with FS.get_dir_to_local_dir(tokenizer_path, wait_finish=True) as local_path: | |
self.tokenizer = getattr(transformers, hf_tokenizer_cls).from_pretrained(local_path, | |
max_length = self.max_length, | |
torch_dtype = torch_dtype, | |
additional_special_tokens=self.added_identifier) | |
with FS.get_dir_to_local_dir(model_path, wait_finish=True) as local_path: | |
self.hf_module = getattr(transformers, hf_model_cls).from_pretrained(local_path, torch_dtype = torch_dtype) | |
self.hf_module = self.hf_module.eval().requires_grad_(False) | |
def forward(self, text: list[str], return_mask = False): | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=False, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
outputs = self.hf_module( | |
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | |
attention_mask=None, | |
output_hidden_states=False, | |
) | |
if return_mask: | |
return outputs[self.output_key], batch_encoding['attention_mask'].to(self.hf_module.device) | |
else: | |
return outputs[self.output_key], None | |
def encode(self, text, return_mask = False): | |
if isinstance(text, str): | |
text = [text] | |
if self.clean: | |
text = [self._clean(u) for u in text] | |
if not self.batch_infer: | |
cont, mask = [], [] | |
for tt in text: | |
one_cont, one_mask = self([tt], return_mask=return_mask) | |
cont.append(one_cont) | |
mask.append(one_mask) | |
if return_mask: | |
return torch.cat(cont, dim=0), torch.cat(mask, dim=0) | |
else: | |
return torch.cat(cont, dim=0) | |
else: | |
ret_data = self(text, return_mask = return_mask) | |
if return_mask: | |
return ret_data | |
else: | |
return ret_data[0] | |
def encode_list(self, text_list, return_mask=True): | |
cont_list = [] | |
mask_list = [] | |
for pp in text_list: | |
cont = self.encode(pp, return_mask=return_mask) | |
cont_list.append(cont[0]) if return_mask else cont_list.append(cont) | |
mask_list.append(cont[1]) if return_mask else mask_list.append(None) | |
if return_mask: | |
return cont_list, mask_list | |
else: | |
return cont_list | |
def encode_list_of_list(self, text_list, return_mask=True): | |
cont_list = [] | |
mask_list = [] | |
for pp in text_list: | |
cont = self.encode_list(pp, return_mask=return_mask) | |
cont_list.append(cont[0]) if return_mask else cont_list.append(cont) | |
mask_list.append(cont[1]) if return_mask else mask_list.append(None) | |
if return_mask: | |
return cont_list, mask_list | |
else: | |
return cont_list | |
def _clean(self, text): | |
if self.clean == 'whitespace': | |
text = whitespace_clean(basic_clean(text)) | |
elif self.clean == 'lower': | |
text = whitespace_clean(basic_clean(text)).lower() | |
elif self.clean == 'canonicalize': | |
text = canonicalize(basic_clean(text)) | |
return text | |
def get_config_template(): | |
return dict_to_yaml('EMBEDDER', | |
__class__.__name__, | |
ACEHFEmbedder.para_dict, | |
set_name=True) | |
class T5ACEPlusClipFluxEmbedder(BaseEmbedder): | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
para_dict = { | |
'T5_MODEL': {}, | |
'CLIP_MODEL': {} | |
} | |
def __init__(self, cfg, logger=None): | |
super().__init__(cfg, logger=logger) | |
self.t5_model = EMBEDDERS.build(cfg.T5_MODEL, logger=logger) | |
self.clip_model = EMBEDDERS.build(cfg.CLIP_MODEL, logger=logger) | |
def encode(self, text, return_mask = False): | |
t5_embeds = self.t5_model.encode(text, return_mask = return_mask) | |
clip_embeds = self.clip_model.encode(text, return_mask = return_mask) | |
# change embedding strategy here | |
return { | |
'context': t5_embeds, | |
'y': clip_embeds, | |
} | |
def encode_list(self, text, return_mask = False): | |
t5_embeds = self.t5_model.encode_list(text, return_mask = return_mask) | |
clip_embeds = self.clip_model.encode_list(text, return_mask = return_mask) | |
# change embedding strategy here | |
return { | |
'context': t5_embeds, | |
'y': clip_embeds, | |
} | |
def encode_list_of_list(self, text, return_mask = False): | |
t5_embeds = self.t5_model.encode_list_of_list(text, return_mask = return_mask) | |
clip_embeds = self.clip_model.encode_list_of_list(text, return_mask = return_mask) | |
# change embedding strategy here | |
return { | |
'context': t5_embeds, | |
'y': clip_embeds, | |
} | |
def get_config_template(): | |
return dict_to_yaml('EMBEDDER', | |
__class__.__name__, | |
T5ACEPlusClipFluxEmbedder.para_dict, | |
set_name=True) | |
class Flux(BaseModel): | |
""" | |
Transformer backbone Diffusion model with RoPE. | |
""" | |
para_dict = { | |
"IN_CHANNELS": { | |
"value": 64, | |
"description": "model's input channels." | |
}, | |
"OUT_CHANNELS": { | |
"value": 64, | |
"description": "model's output channels." | |
}, | |
"HIDDEN_SIZE": { | |
"value": 1024, | |
"description": "model's hidden size." | |
}, | |
"NUM_HEADS": { | |
"value": 16, | |
"description": "number of heads in the transformer." | |
}, | |
"AXES_DIM": { | |
"value": [16, 56, 56], | |
"description": "dimensions of the axes of the positional encoding." | |
}, | |
"THETA": { | |
"value": 10_000, | |
"description": "theta for positional encoding." | |
}, | |
"VEC_IN_DIM": { | |
"value": 768, | |
"description": "dimension of the vector input." | |
}, | |
"GUIDANCE_EMBED": { | |
"value": False, | |
"description": "whether to use guidance embedding." | |
}, | |
"CONTEXT_IN_DIM": { | |
"value": 4096, | |
"description": "dimension of the context input." | |
}, | |
"MLP_RATIO": { | |
"value": 4.0, | |
"description": "ratio of mlp hidden size to hidden size." | |
}, | |
"QKV_BIAS": { | |
"value": True, | |
"description": "whether to use bias in qkv projection." | |
}, | |
"DEPTH": { | |
"value": 19, | |
"description": "number of transformer blocks." | |
}, | |
"DEPTH_SINGLE_BLOCKS": { | |
"value": 38, | |
"description": "number of transformer blocks in the single stream block." | |
}, | |
"USE_GRAD_CHECKPOINT": { | |
"value": False, | |
"description": "whether to use gradient checkpointing." | |
}, | |
"ATTN_BACKEND": { | |
"value": "pytorch", | |
"description": "backend for the transformer blocks, 'pytorch' or 'flash_attn'." | |
} | |
} | |
def __init__( | |
self, | |
cfg, | |
logger = None | |
): | |
super().__init__(cfg, logger=logger) | |
self.in_channels = cfg.IN_CHANNELS | |
self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels) | |
hidden_size = cfg.get("HIDDEN_SIZE", 1024) | |
num_heads = cfg.get("NUM_HEADS", 16) | |
axes_dim = cfg.AXES_DIM | |
theta = cfg.THETA | |
vec_in_dim = cfg.VEC_IN_DIM | |
self.guidance_embed = cfg.GUIDANCE_EMBED | |
context_in_dim = cfg.CONTEXT_IN_DIM | |
mlp_ratio = cfg.MLP_RATIO | |
qkv_bias = cfg.QKV_BIAS | |
depth = cfg.DEPTH | |
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS | |
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False) | |
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch") | |
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None) | |
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None) | |
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None) | |
if hidden_size % num_heads != 0: | |
raise ValueError( | |
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" | |
) | |
pe_dim = hidden_size // num_heads | |
if sum(axes_dim) != pe_dim: | |
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = hidden_size | |
self.num_heads = num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim= axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size) | |
self.guidance_in = ( | |
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity() | |
) | |
self.txt_in = nn.Linear(context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
backend=self.attn_backend | |
) | |
for _ in range(depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend) | |
for _ in range(depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
def prepare_input(self, x, context, y, x_shape=None): | |
# x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360] | |
bs, c, h, w = x.shape | |
x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
x_id = torch.zeros(h // 2, w // 2, 3) | |
x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None] | |
x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :] | |
x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs) | |
txt_ids = torch.zeros(bs, context.shape[1], 3) | |
return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w | |
def unpack(self, x: Tensor, height: int, width: int) -> Tensor: | |
return rearrange( | |
x, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=math.ceil(height/2), | |
w=math.ceil(width/2), | |
ph=2, | |
pw=2, | |
) | |
def merge_diffuser_lora(self, ori_sd, lora_sd, scale = 1.0): | |
key_map = { | |
"single_blocks.{}.linear1.weight": {"key_list": [ | |
["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight"], | |
["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight"], | |
["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight"], | |
["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight"] | |
], "num": 38}, | |
"single_blocks.{}.modulation.lin.weight": {"key_list": [ | |
["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight"], | |
], "num": 38}, | |
"single_blocks.{}.linear2.weight": {"key_list": [ | |
["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight", | |
"transformer.single_transformer_blocks.{}.proj_out.lora_B.weight"], | |
], "num": 38}, | |
"double_blocks.{}.txt_attn.qkv.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight"], | |
], "num": 19}, | |
"double_blocks.{}.img_attn.qkv.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_q.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_k.lora_B.weight"], | |
["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_v.lora_B.weight"], | |
], "num": 19}, | |
"double_blocks.{}.img_attn.proj.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_attn.proj.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight", | |
"transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.img_mlp.0.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.img_mlp.2.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff.net.2.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_mlp.0.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_mlp.2.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight", | |
"transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.img_mod.lin.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight", | |
"transformer.transformer_blocks.{}.norm1.linear.lora_B.weight"] | |
], "num": 19}, | |
"double_blocks.{}.txt_mod.lin.weight": {"key_list": [ | |
["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight", | |
"transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight"] | |
], "num": 19} | |
} | |
for k, v in key_map.items(): | |
key_list = v["key_list"] | |
block_num = v["num"] | |
for block_id in range(block_num): | |
current_weight_list = [] | |
for k_list in key_list: | |
current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0), | |
lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0) | |
current_weight_list.append(current_weight) | |
current_weight = torch.cat(current_weight_list, dim=0) | |
ori_sd[k.format(block_id)] += scale*current_weight | |
return ori_sd | |
def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0): | |
have_lora_keys = {} | |
for k, v in lora_sd.items(): | |
k = k[len("model."):] if k.startswith("model.") else k | |
ori_key = k.split("lora")[0] + "weight" | |
if ori_key not in ori_sd: | |
raise f"{ori_key} should in the original statedict" | |
if ori_key not in have_lora_keys: | |
have_lora_keys[ori_key] = {} | |
if "lora_A" in k: | |
have_lora_keys[ori_key]["lora_A"] = v | |
elif "lora_B" in k: | |
have_lora_keys[ori_key]["lora_B"] = v | |
else: | |
raise NotImplementedError | |
for key, v in have_lora_keys.items(): | |
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0) | |
ori_sd[key] += scale * current_weight | |
return ori_sd | |
def load_pretrained_model(self, pretrained_model): | |
if next(self.parameters()).device.type == 'meta': | |
map_location = we.device_id | |
else: | |
map_location = "cpu" | |
if self.lora_model is not None: | |
map_location = we.device_id | |
if pretrained_model is not None: | |
with FS.get_from(pretrained_model, wait_finish=True) as local_model: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
sd = load_safetensors(local_model, device=map_location) | |
else: | |
sd = torch.load(local_model, map_location=map_location) | |
if "state_dict" in sd: | |
sd = sd["state_dict"] | |
if "model" in sd: | |
sd = sd["model"]["model"] | |
if self.lora_model is not None: | |
with FS.get_from(self.lora_model, wait_finish=True) as local_model: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
lora_sd = load_safetensors(local_model, device=map_location) | |
else: | |
lora_sd = torch.load(local_model, map_location=map_location) | |
sd = self.merge_diffuser_lora(sd, lora_sd) | |
if self.swift_lora_model is not None: | |
with FS.get_from(self.swift_lora_model, wait_finish=True) as local_model: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
lora_sd = load_safetensors(local_model, device=map_location) | |
else: | |
lora_sd = torch.load(local_model, map_location=map_location) | |
sd = self.merge_swift_lora(sd, lora_sd) | |
adapter_ckpt = {} | |
if self.pretrain_adapter is not None: | |
with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter: | |
if local_model.endswith('safetensors'): | |
from safetensors.torch import load_file as load_safetensors | |
adapter_ckpt = load_safetensors(local_adapter, device=map_location) | |
else: | |
adapter_ckpt = torch.load(local_adapter, map_location=map_location) | |
sd.update(adapter_ckpt) | |
new_ckpt = OrderedDict() | |
for k, v in sd.items(): | |
if k in ("img_in.weight"): | |
model_p = self.state_dict()[k] | |
if v.shape != model_p.shape: | |
model_p.zero_() | |
model_p[:, :64].copy_(v[:, :64]) | |
new_ckpt[k] = torch.nn.parameter.Parameter(model_p) | |
else: | |
new_ckpt[k] = v | |
else: | |
new_ckpt[k] = v | |
missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True) | |
self.logger.info( | |
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys' | |
) | |
if len(missing) > 0: | |
self.logger.info(f'Missing Keys:\n {missing}') | |
if len(unexpected) > 0: | |
self.logger.info(f'\nUnexpected Keys:\n {unexpected}') | |
def forward( | |
self, | |
x: Tensor, | |
t: Tensor, | |
cond: dict = {}, | |
guidance: Tensor | None = None, | |
gc_seg: int = 0 | |
) -> Tensor: | |
x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"]) | |
# running on sequences img | |
x = self.img_in(x) | |
vec = self.time_in(timestep_embedding(t, 256)) | |
if self.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, x_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
txt_length=txt.shape[1], | |
) | |
x = torch.cat((txt, x), 1) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.double_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.double_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.double_blocks: | |
x = block(x, **kwargs) | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.single_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.single_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.single_blocks: | |
x = block(x, **kwargs) | |
x = x[:, txt.shape[1] :, ...] | |
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64 | |
x = self.unpack(x, h, w) | |
return x | |
def get_config_template(): | |
return dict_to_yaml('MODEL', | |
__class__.__name__, | |
Flux.para_dict, | |
set_name=True) | |
class FluxMR(Flux): | |
def prepare_input(self, x, cond): | |
if isinstance(cond['context'], list): | |
context, y = torch.cat(cond["context"], dim=0).to(x), torch.cat(cond["y"], dim=0).to(x) | |
else: | |
context, y = cond['context'].to(x), cond['y'].to(x) | |
batch_frames, batch_frames_ids = [], [] | |
for ix, shape in zip(x, cond["x_shapes"]): | |
# unpack image from sequence | |
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1]) | |
c, h, w = ix.shape | |
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2) | |
ix_id = torch.zeros(h // 2, w // 2, 3) | |
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None] | |
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :] | |
ix_id = rearrange(ix_id, "h w c -> (h w) c") | |
batch_frames.append([ix]) | |
batch_frames_ids.append([ix_id]) | |
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], [] | |
for frames, frame_ids in zip(batch_frames, batch_frames_ids): | |
proj_frames = [] | |
for idx, one_frame in enumerate(frames): | |
one_frame = self.img_in(one_frame) | |
proj_frames.append(one_frame) | |
ix = torch.cat(proj_frames, dim=0) | |
if_id = torch.cat(frame_ids, dim=0) | |
x_list.append(ix) | |
x_id_list.append(if_id) | |
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool()) | |
x_seq_length.append(ix.shape[0]) | |
x = pad_sequence(tuple(x_list), batch_first=True) | |
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2 | |
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True) | |
txt = self.txt_in(context) | |
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x) | |
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool() | |
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length | |
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor: | |
x_list = [] | |
image_shapes = cond["x_shapes"] | |
for u, shape, seq_length in zip(x, image_shapes, x_seq_length): | |
height, width = shape | |
h, w = math.ceil(height / 2), math.ceil(width / 2) | |
u = rearrange( | |
u[seq_length-h*w:seq_length, ...], | |
"(h w) (c ph pw) -> (h ph w pw) c", | |
h=h, | |
w=w, | |
ph=2, | |
pw=2, | |
) | |
x_list.append(u) | |
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1) | |
return x | |
def forward( | |
self, | |
x: Tensor, | |
t: Tensor, | |
cond: dict = {}, | |
guidance: Tensor | None = None, | |
gc_seg: int = 0, | |
**kwargs | |
) -> Tensor: | |
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond) | |
# running on sequences img | |
vec = self.time_in(timestep_embedding(t, 256)) | |
if self.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
ids = torch.cat((txt_ids, x_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
mask_aside = torch.cat((mask_txt, mask_x), dim=1) | |
mask = mask_aside[:, None, :] * mask_aside[:, :, None] | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
mask=mask, | |
txt_length = txt.shape[1], | |
) | |
x = torch.cat((txt, x), 1) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.double_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.double_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.double_blocks: | |
x = block(x, **kwargs) | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
mask=mask, | |
) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.single_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.single_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.single_blocks: | |
x = block(x, **kwargs) | |
x = x[:, txt.shape[1]:, ...] | |
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64 | |
x = self.unpack(x, cond, seq_length_list) | |
return x | |
def get_config_template(): | |
return dict_to_yaml('MODEL', | |
__class__.__name__, | |
FluxEdit.para_dict, | |
set_name=True) | |
class FluxEdit(FluxMR): | |
def prepare_input(self, x, cond, *args, **kwargs): | |
context, y = cond["context"], cond["y"] | |
batch_frames, batch_frames_ids, batch_shift = [], [], [] | |
for ix, shape, is_align in zip(x, cond["x_shapes"], cond['align']): | |
# unpack image from sequence | |
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1]) | |
c, h, w = ix.shape | |
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2) | |
ix_id = torch.zeros(h // 2, w // 2, 3) | |
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None] | |
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :] | |
batch_shift.append(h // 2) #if is_align < 1 else batch_shift.append(0) | |
ix_id = rearrange(ix_id, "h w c -> (h w) c") | |
batch_frames.append([ix]) | |
batch_frames_ids.append([ix_id]) | |
if 'edit_x' in cond: | |
for i, edit in enumerate(cond['edit_x']): | |
if edit is None: | |
continue | |
for ie in edit: | |
ie = ie.squeeze(0) | |
c, h, w = ie.shape | |
ie = rearrange(ie, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2) | |
ie_id = torch.zeros(h // 2, w // 2, 3) | |
ie_id[..., 1] = ie_id[..., 1] + torch.arange(batch_shift[i], h // 2 + batch_shift[i])[:, None] | |
ie_id[..., 2] = ie_id[..., 2] + torch.arange(w // 2)[None, :] | |
ie_id = rearrange(ie_id, "h w c -> (h w) c") | |
batch_frames[i].append(ie) | |
batch_frames_ids[i].append(ie_id) | |
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], [] | |
for frames, frame_ids in zip(batch_frames, batch_frames_ids): | |
proj_frames = [] | |
for idx, one_frame in enumerate(frames): | |
one_frame = self.img_in(one_frame) | |
proj_frames.append(one_frame) | |
ix = torch.cat(proj_frames, dim=0) | |
if_id = torch.cat(frame_ids, dim=0) | |
x_list.append(ix) | |
x_id_list.append(if_id) | |
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool()) | |
x_seq_length.append(ix.shape[0]) | |
x = pad_sequence(tuple(x_list), batch_first=True) | |
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2 | |
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True) | |
txt_list, mask_txt_list, y_list = [], [], [] | |
for sample_id, (ctx, yy) in enumerate(zip(context, y)): | |
ctx_batch = [] | |
for frame_id, one_ctx in enumerate(ctx): | |
one_ctx = self.txt_in(one_ctx.to(x)) | |
ctx_batch.append(one_ctx) | |
txt_list.append(torch.cat(ctx_batch, dim=0)) | |
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool()) | |
y_list.append(yy.mean(dim = 0, keepdim=True)) | |
txt = pad_sequence(tuple(txt_list), batch_first=True) | |
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x) | |
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True) | |
y = torch.cat(y_list, dim=0) | |
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length | |
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor: | |
x_list = [] | |
image_shapes = cond["x_shapes"] | |
for u, shape, seq_length in zip(x, image_shapes, x_seq_length): | |
height, width = shape | |
h, w = math.ceil(height / 2), math.ceil(width / 2) | |
u = rearrange( | |
u[:h*w, ...], | |
"(h w) (c ph pw) -> (h ph w pw) c", | |
h=h, | |
w=w, | |
ph=2, | |
pw=2, | |
) | |
x_list.append(u) | |
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1) | |
return x | |
def forward( | |
self, | |
x: Tensor, | |
t: Tensor, | |
cond: dict = {}, | |
guidance: Tensor | None = None, | |
gc_seg: int = 0, | |
text_position_embeddings = None | |
) -> Tensor: | |
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond, text_position_embeddings) | |
# running on sequences img | |
vec = self.time_in(timestep_embedding(t, 256)) | |
if self.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
ids = torch.cat((txt_ids, x_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
mask_aside = torch.cat((mask_txt, mask_x), dim=1) | |
mask = mask_aside[:, None, :] * mask_aside[:, :, None] | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
mask=mask, | |
txt_length = txt.shape[1], | |
) | |
x = torch.cat((txt, x), 1) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.double_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.double_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.double_blocks: | |
x = block(x, **kwargs) | |
kwargs = dict( | |
vec=vec, | |
pe=pe, | |
mask=mask, | |
) | |
if self.use_grad_checkpoint and gc_seg >= 0: | |
x = checkpoint_sequential( | |
functions=[partial(block, **kwargs) for block in self.single_blocks], | |
segments=gc_seg if gc_seg > 0 else len(self.single_blocks), | |
input=x, | |
use_reentrant=False | |
) | |
else: | |
for block in self.single_blocks: | |
x = block(x, **kwargs) | |
x = x[:, txt.shape[1]:, ...] | |
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64 | |
x = self.unpack(x, cond, seq_length_list) | |
return x | |
def get_config_template(): | |
return dict_to_yaml('MODEL', | |
__class__.__name__, | |
FluxEdit.para_dict, | |
set_name=True) |