Spaces:
Running
on
Zero
Running
on
Zero
Update ace_inference.py
Browse files- ace_inference.py +3 -2
ace_inference.py
CHANGED
@@ -154,6 +154,7 @@ class ACEInference(DiffusionInference):
|
|
154 |
self.diffusion_model['model'] = BACKBONES.build(self.diffusion_model['cfg'], logger=self.logger).eval()
|
155 |
# self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
156 |
self.diffusion_model['model'].load_pretrained_model(pretrained_model)
|
|
|
157 |
self.diffusion_model['device'] = we.device_id
|
158 |
|
159 |
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
|
@@ -326,8 +327,8 @@ class ACEInference(DiffusionInference):
|
|
326 |
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
327 |
function_name, dtype = self.get_function_info(self.diffusion_model)
|
328 |
with torch.autocast('cuda',
|
329 |
-
enabled=
|
330 |
-
dtype=
|
331 |
latent = self.diffusion.sample(
|
332 |
noise=noise,
|
333 |
sampler=sampler,
|
|
|
154 |
self.diffusion_model['model'] = BACKBONES.build(self.diffusion_model['cfg'], logger=self.logger).eval()
|
155 |
# self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
156 |
self.diffusion_model['model'].load_pretrained_model(pretrained_model)
|
157 |
+
self.diffusion_model['model'] = self.diffusion_model['model'].to(torch.bfloat16)
|
158 |
self.diffusion_model['device'] = we.device_id
|
159 |
|
160 |
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
|
|
|
327 |
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
328 |
function_name, dtype = self.get_function_info(self.diffusion_model)
|
329 |
with torch.autocast('cuda',
|
330 |
+
enabled=True,
|
331 |
+
dtype=torch.bfloat16):
|
332 |
latent = self.diffusion.sample(
|
333 |
noise=noise,
|
334 |
sampler=sampler,
|