chaojiemao commited on
Commit
868bbb0
·
1 Parent(s): 7e340b4

modify model

Browse files
Files changed (4) hide show
  1. ace_inference.py +0 -365
  2. model/__init__.py +0 -1
  3. model/flux.py +0 -1064
  4. model/layers.py +0 -356
ace_inference.py DELETED
@@ -1,365 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # Copyright (c) Alibaba, Inc. and its affiliates.
3
- import copy
4
- import math
5
- import random
6
-
7
- import numpy as np
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- import torchvision.transforms.functional as TF
12
- from PIL import Image
13
- import torchvision.transforms as T
14
- from scepter.modules.model.registry import DIFFUSIONS,BACKBONES
15
- from scepter.modules.model.utils.basic_utils import check_list_of_list
16
- from scepter.modules.model.utils.basic_utils import \
17
- pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor
18
- from scepter.modules.model.utils.basic_utils import (
19
- to_device, unpack_tensor_into_imagelist)
20
- from scepter.modules.utils.distribute import we
21
- from scepter.modules.utils.logger import get_logger
22
-
23
- from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model
24
-
25
-
26
- def process_edit_image(images,
27
- masks,
28
- tasks,
29
- max_seq_len=1024,
30
- max_aspect_ratio=4,
31
- d=16,
32
- **kwargs):
33
-
34
- if not isinstance(images, list):
35
- images = [images]
36
- if not isinstance(masks, list):
37
- masks = [masks]
38
- if not isinstance(tasks, list):
39
- tasks = [tasks]
40
-
41
- img_tensors = []
42
- mask_tensors = []
43
- for img, mask, task in zip(images, masks, tasks):
44
- if mask is None or mask == '':
45
- mask = Image.new('L', img.size, 0)
46
- W, H = img.size
47
- if H / W > max_aspect_ratio:
48
- img = TF.center_crop(img, [int(max_aspect_ratio * W), W])
49
- mask = TF.center_crop(mask, [int(max_aspect_ratio * W), W])
50
- elif W / H > max_aspect_ratio:
51
- img = TF.center_crop(img, [H, int(max_aspect_ratio * H)])
52
- mask = TF.center_crop(mask, [H, int(max_aspect_ratio * H)])
53
-
54
- H, W = img.height, img.width
55
- scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
56
- rH = int(H * scale) // d * d # ensure divisible by self.d
57
- rW = int(W * scale) // d * d
58
-
59
- img = TF.resize(img, (rH, rW),
60
- interpolation=TF.InterpolationMode.BICUBIC)
61
- mask = TF.resize(mask, (rH, rW),
62
- interpolation=TF.InterpolationMode.NEAREST_EXACT)
63
-
64
- mask = np.asarray(mask)
65
- mask = np.where(mask > 128, 1, 0)
66
- mask = mask.astype(
67
- np.float32) if np.any(mask) else np.ones_like(mask).astype(
68
- np.float32)
69
-
70
- img_tensor = TF.to_tensor(img).to(we.device_id)
71
- img_tensor = TF.normalize(img_tensor,
72
- mean=[0.5, 0.5, 0.5],
73
- std=[0.5, 0.5, 0.5])
74
- mask_tensor = TF.to_tensor(mask).to(we.device_id)
75
- if task in ['inpainting', 'Try On', 'Inpainting']:
76
- mask_indicator = mask_tensor.repeat(3, 1, 1)
77
- img_tensor[mask_indicator == 1] = -1.0
78
- img_tensors.append(img_tensor)
79
- mask_tensors.append(mask_tensor)
80
- return img_tensors, mask_tensors
81
-
82
- class TextEmbedding(nn.Module):
83
- def __init__(self, embedding_shape):
84
- super().__init__()
85
- self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
86
-
87
- class ACEInference(DiffusionInference):
88
- def __init__(self, logger=None):
89
- if logger is None:
90
- logger = get_logger(name='scepter')
91
- self.logger = logger
92
- self.loaded_model = {}
93
- self.loaded_model_name = [
94
- 'diffusion_model', 'first_stage_model', 'cond_stage_model', 'ref_cond_stage_model'
95
- ]
96
-
97
- def init_from_cfg(self, cfg):
98
- self.name = cfg.NAME
99
- self.is_default = cfg.get('IS_DEFAULT', False)
100
- self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
101
- module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
102
- assert cfg.have('MODEL')
103
- self.size_factor = cfg.get('SIZE_FACTOR', 8)
104
- self.diffusion_model = self.infer_model(
105
- cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
106
- 'DIFFUSION_MODEL',
107
- None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None
108
- self.first_stage_model = self.infer_model(
109
- cfg.MODEL.FIRST_STAGE_MODEL,
110
- module_paras.get(
111
- 'FIRST_STAGE_MODEL',
112
- None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None
113
- self.cond_stage_model = self.infer_model(
114
- cfg.MODEL.COND_STAGE_MODEL,
115
- module_paras.get(
116
- 'COND_STAGE_MODEL',
117
- None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
118
-
119
- self.ref_cond_stage_model = self.infer_model(
120
- cfg.MODEL.REF_COND_STAGE_MODEL,
121
- module_paras.get(
122
- 'REF_COND_STAGE_MODEL',
123
- None)) if cfg.MODEL.have('REF_COND_STAGE_MODEL') else None
124
-
125
- self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
126
- logger=self.logger)
127
- self.interpolate_func = lambda x: (F.interpolate(
128
- x.unsqueeze(0),
129
- scale_factor=1 / self.size_factor,
130
- mode='nearest-exact') if x is not None else None)
131
-
132
- self.max_seq_length = cfg.get("MAX_SEQ_LENGTH", 4096)
133
- self.src_max_seq_length = cfg.get("SRC_MAX_SEQ_LENGTH", 1024)
134
- self.image_token = cfg.MODEL.get("IMAGE_TOKEN", "<img>")
135
-
136
- self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
137
- self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
138
- False)
139
- if self.use_text_pos_embeddings:
140
- self.text_position_embeddings = TextEmbedding(
141
- (10, 4096)).eval().requires_grad_(False).to(we.device_id)
142
- else:
143
- self.text_position_embeddings = None
144
-
145
- if not self.use_dynamic_model:
146
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
147
- self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
148
- if self.ref_cond_stage_model is not None: self.dynamic_load(self.ref_cond_stage_model, 'ref_cond_stage_model')
149
- # self.dynamic_load(self.diffusion_model, 'diffusion_model')
150
- # self.diffusion_model["model"].to(torch.bfloat16)
151
- with torch.device("meta"):
152
- pretrained_model = self.diffusion_model['cfg'].PRETRAINED_MODEL
153
- self.diffusion_model['cfg'].PRETRAINED_MODEL = None
154
- self.diffusion_model['model'] = BACKBONES.build(self.diffusion_model['cfg'], logger=self.logger).eval()
155
- # self.dynamic_load(self.diffusion_model, 'diffusion_model')
156
- self.diffusion_model['model'].load_pretrained_model(pretrained_model)
157
- self.diffusion_model['model'] = self.diffusion_model['model'].to(torch.bfloat16)
158
- self.diffusion_model['device'] = we.device_id
159
-
160
- def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
161
- c, H, W = image.shape
162
- scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
163
- rH = int(H * scale) // 16 * 16 # ensure divisible by self.d
164
- rW = int(W * scale) // 16 * 16
165
- image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
166
- return image
167
-
168
-
169
- @torch.no_grad()
170
- def encode_first_stage(self, x, **kwargs):
171
- _, dtype = self.get_function_info(self.first_stage_model, 'encode')
172
- with torch.autocast('cuda',
173
- enabled=dtype in ('float16', 'bfloat16'),
174
- dtype=getattr(torch, dtype)):
175
- def run_one_image(u):
176
- zu = get_model(self.first_stage_model).encode(u)
177
- if isinstance(zu, (tuple, list)):
178
- zu = zu[0]
179
- return zu
180
-
181
- z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x]
182
- return z
183
-
184
-
185
- @torch.no_grad()
186
- def decode_first_stage(self, z):
187
- _, dtype = self.get_function_info(self.first_stage_model, 'decode')
188
- with torch.autocast('cuda',
189
- enabled=dtype in ('float16', 'bfloat16'),
190
- dtype=getattr(torch, dtype)):
191
- return [get_model(self.first_stage_model).decode(zu) for zu in z]
192
-
193
- def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
194
- noise = torch.randn(
195
- num_samples,
196
- 16,
197
- # allow for packing
198
- 2 * math.ceil(h / 16),
199
- 2 * math.ceil(w / 16),
200
- device=device,
201
- dtype=dtype,
202
- generator=torch.Generator(device=device).manual_seed(seed),
203
- )
204
- return noise
205
-
206
- # def preprocess_prompt(self, prompt):
207
- # prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
208
- # for pp_id, pp in enumerate(prompt_):
209
- # prompt_[pp_id] = [""] + pp
210
- # for p_id, p in enumerate(prompt_[pp_id]):
211
- # prompt_[pp_id][p_id] = self.image_token + self.text_indentifers[p_id] + " " + p
212
- # prompt_[pp_id] = [f";".join(prompt_[pp_id])]
213
- # return prompt_
214
-
215
- @torch.no_grad()
216
- def __call__(self,
217
- image=None,
218
- mask=None,
219
- prompt='',
220
- task=None,
221
- negative_prompt='',
222
- output_height=1024,
223
- output_width=1024,
224
- sampler='flow_euler',
225
- sample_steps=20,
226
- guide_scale=3.5,
227
- seed=-1,
228
- history_io=None,
229
- tar_index=0,
230
- align=0,
231
- **kwargs):
232
- input_image, input_mask = image, mask
233
- seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
234
- if input_image is not None:
235
- # assert isinstance(input_image, list) and isinstance(input_mask, list)
236
- if task is None:
237
- task = [''] * len(input_image)
238
- if not isinstance(prompt, list):
239
- prompt = [prompt] * len(input_image)
240
- prompt = [
241
- pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
242
- for i, pp in enumerate(prompt)
243
- ]
244
- edit_image, edit_image_mask = process_edit_image(
245
- input_image, input_mask, task, max_seq_len=self.src_max_seq_length)
246
- image, image_mask = self.upscale_resize(edit_image[tar_index]), self.upscale_resize(edit_image_mask[
247
- tar_index])
248
- # edit_image, edit_image_mask = [[self.upscale_resize(i) for i in edit_image]], [[self.upscale_resize(i) for i in edit_image_mask]]
249
- # image, image_mask = edit_image[tar_index], edit_image_mask[tar_index]
250
- edit_image, edit_image_mask = [edit_image], [edit_image_mask]
251
- else:
252
- edit_image = edit_image_mask = [[]]
253
- image = torch.zeros(
254
- size=[3, int(output_height),
255
- int(output_width)])
256
- image_mask = torch.ones(
257
- size=[1, int(output_height),
258
- int(output_width)])
259
- if not isinstance(prompt, list):
260
- prompt = [prompt]
261
-
262
- image, image_mask, prompt = [image], [image_mask], [prompt],
263
- align = [align for p in prompt] if isinstance(align, int) else align
264
-
265
- assert check_list_of_list(prompt) and check_list_of_list(
266
- edit_image) and check_list_of_list(edit_image_mask)
267
- # negative prompt is not used
268
- image = to_device(image)
269
- ctx = {}
270
- # Get Noise Shape
271
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
272
- x = self.encode_first_stage(image)
273
- self.dynamic_unload(self.first_stage_model,
274
- 'first_stage_model',
275
- skip_loaded=not self.use_dynamic_model)
276
-
277
- g = torch.Generator(device=we.device_id).manual_seed(seed)
278
-
279
- noise = [
280
- torch.randn((1, 16, i.shape[2], i.shape[3]), device=we.device_id, dtype=torch.bfloat16).normal_(generator=g)
281
- for i in x
282
- ]
283
- noise, x_shapes = pack_imagelist_into_tensor(noise)
284
- ctx['x_shapes'] = x_shapes
285
- ctx['align'] = align
286
-
287
- image_mask = to_device(image_mask, strict=False)
288
- cond_mask = [self.interpolate_func(i) for i in image_mask
289
- ] if image_mask is not None else [None] * len(image)
290
- ctx['x_mask'] = cond_mask
291
- # Encode Prompt
292
- instruction_prompt = [[pp[-1]] if "{image}" in pp[-1] else ["{image} " + pp[-1]] for pp in prompt]
293
- self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
294
- function_name, dtype = self.get_function_info(self.cond_stage_model)
295
- cont = getattr(get_model(self.cond_stage_model), function_name)(instruction_prompt)
296
- cont["context"] = [ct[-1] for ct in cont["context"]]
297
- cont["y"] = [ct[-1] for ct in cont["y"]]
298
- self.dynamic_unload(self.cond_stage_model,
299
- 'cond_stage_model',
300
- skip_loaded=not self.use_dynamic_model)
301
- ctx.update(cont)
302
-
303
- # Encode Edit Images
304
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
305
- edit_image = [to_device(i, strict=False) for i in edit_image]
306
- edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
307
- e_img, e_mask = [], []
308
- for u, m in zip(edit_image, edit_image_mask):
309
- if u is None:
310
- continue
311
- if m is None:
312
- m = [None] * len(u)
313
- e_img.append(self.encode_first_stage(u, **kwargs))
314
- e_mask.append([self.interpolate_func(i) for i in m])
315
- self.dynamic_unload(self.first_stage_model,
316
- 'first_stage_model',
317
- skip_loaded=not self.use_dynamic_model)
318
- ctx['edit_x'] = e_img
319
- ctx['edit_mask'] = e_mask
320
- # Encode Ref Images
321
- if guide_scale is not None:
322
- guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device, dtype=noise.dtype)
323
- else:
324
- guide_scale = None
325
-
326
- # Diffusion Process
327
- self.dynamic_load(self.diffusion_model, 'diffusion_model')
328
- function_name, dtype = self.get_function_info(self.diffusion_model)
329
- with torch.autocast('cuda',
330
- enabled=True,
331
- dtype=torch.bfloat16):
332
- latent = self.diffusion.sample(
333
- noise=noise,
334
- sampler=sampler,
335
- model=get_model(self.diffusion_model),
336
- model_kwargs={
337
- "cond": ctx, "guidance": guide_scale, "gc_seg": -1
338
- },
339
- steps=sample_steps,
340
- show_progress=True,
341
- guide_scale=guide_scale,
342
- return_intermediate=None,
343
- reverse_scale=-1,
344
- **kwargs).float()
345
- if self.use_dynamic_model: self.dynamic_unload(self.diffusion_model,
346
- 'diffusion_model',
347
- skip_loaded=not self.use_dynamic_model)
348
-
349
- # Decode to Pixel Space
350
- self.dynamic_load(self.first_stage_model, 'first_stage_model')
351
- samples = unpack_tensor_into_imagelist(latent, x_shapes)
352
- x_samples = self.decode_first_stage(samples)
353
- self.dynamic_unload(self.first_stage_model,
354
- 'first_stage_model',
355
- skip_loaded=not self.use_dynamic_model)
356
- x_samples = [x.squeeze(0) for x in x_samples]
357
-
358
- imgs = [
359
- torch.clamp((x_i.float() + 1.0) / 2.0,
360
- min=0.0,
361
- max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
362
- for x_i in x_samples
363
- ]
364
- imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
365
- return imgs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .flux import Flux, FluxMR, FluxEdit, ACETextEmbedder, T5ACEPlusClipFluxEmbedder, ACEHFEmbedder
 
 
model/flux.py DELETED
@@ -1,1064 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # Copyright (c) Alibaba, Inc. and its affiliates.
3
- import math
4
- from collections import OrderedDict
5
- from functools import partial
6
- import warnings
7
- from contextlib import nullcontext
8
- import torch
9
- from einops import rearrange, repeat
10
- from scepter.modules.model.base_model import BaseModel
11
- from scepter.modules.model.registry import BACKBONES
12
- from scepter.modules.utils.config import dict_to_yaml
13
- from scepter.modules.utils.distribute import we
14
- from scepter.modules.utils.file_system import FS
15
- from torch import Tensor, nn
16
- from torch.nn.utils.rnn import pad_sequence
17
- from torch.utils.checkpoint import checkpoint_sequential
18
- import torch.nn.functional as F
19
- import torch.utils.dlpack
20
- import transformers
21
- from scepter.modules.model.embedder.base_embedder import BaseEmbedder
22
- from scepter.modules.model.registry import EMBEDDERS
23
- from scepter.modules.model.tokenizer.tokenizer_component import (
24
- basic_clean, canonicalize, heavy_clean, whitespace_clean)
25
- try:
26
- from transformers import AutoTokenizer, T5EncoderModel
27
- except Exception as e:
28
- warnings.warn(
29
- f'Import transformers error, please deal with this problem: {e}')
30
-
31
- from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
32
- MLPEmbedder, SingleStreamBlock,
33
- timestep_embedding)
34
-
35
-
36
-
37
- @EMBEDDERS.register_class()
38
- class ACETextEmbedder(BaseEmbedder):
39
- """
40
- Uses the OpenCLIP transformer encoder for text
41
- """
42
- """
43
- Uses the OpenCLIP transformer encoder for text
44
- """
45
- para_dict = {
46
- 'PRETRAINED_MODEL': {
47
- 'value':
48
- 'google/umt5-small',
49
- 'description':
50
- 'Pretrained Model for umt5, modelcard path or local path.'
51
- },
52
- 'TOKENIZER_PATH': {
53
- 'value': 'google/umt5-small',
54
- 'description':
55
- 'Tokenizer Path for umt5, modelcard path or local path.'
56
- },
57
- 'FREEZE': {
58
- 'value': True,
59
- 'description': ''
60
- },
61
- 'USE_GRAD': {
62
- 'value': False,
63
- 'description': 'Compute grad or not.'
64
- },
65
- 'CLEAN': {
66
- 'value':
67
- 'whitespace',
68
- 'description':
69
- 'Set the clean strtegy for tokenizer, used when TOKENIZER_PATH is not None.'
70
- },
71
- 'LAYER': {
72
- 'value': 'last',
73
- 'description': ''
74
- },
75
- 'LEGACY': {
76
- 'value':
77
- True,
78
- 'description':
79
- 'Whether use legacy returnd feature or not ,default True.'
80
- }
81
- }
82
-
83
- def __init__(self, cfg, logger=None):
84
- super().__init__(cfg, logger=logger)
85
- pretrained_path = cfg.get('PRETRAINED_MODEL', None)
86
- self.t5_dtype = cfg.get('T5_DTYPE', 'float32')
87
- assert pretrained_path
88
- with FS.get_dir_to_local_dir(pretrained_path,
89
- wait_finish=True) as local_path:
90
- self.model = T5EncoderModel.from_pretrained(
91
- local_path,
92
- torch_dtype=getattr(
93
- torch,
94
- 'float' if self.t5_dtype == 'float32' else self.t5_dtype))
95
- tokenizer_path = cfg.get('TOKENIZER_PATH', None)
96
- self.length = cfg.get('LENGTH', 77)
97
-
98
- self.use_grad = cfg.get('USE_GRAD', False)
99
- self.clean = cfg.get('CLEAN', 'whitespace')
100
- self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
101
- if tokenizer_path:
102
- self.tokenize_kargs = {'return_tensors': 'pt'}
103
- with FS.get_dir_to_local_dir(tokenizer_path,
104
- wait_finish=True) as local_path:
105
- if self.added_identifier is not None and isinstance(
106
- self.added_identifier, list):
107
- self.tokenizer = AutoTokenizer.from_pretrained(local_path)
108
- else:
109
- self.tokenizer = AutoTokenizer.from_pretrained(local_path)
110
- if self.length is not None:
111
- self.tokenize_kargs.update({
112
- 'padding': 'max_length',
113
- 'truncation': True,
114
- 'max_length': self.length
115
- })
116
- self.eos_token = self.tokenizer(
117
- self.tokenizer.eos_token)['input_ids'][0]
118
- else:
119
- self.tokenizer = None
120
- self.tokenize_kargs = {}
121
-
122
- self.use_grad = cfg.get('USE_GRAD', False)
123
- self.clean = cfg.get('CLEAN', 'whitespace')
124
-
125
- def freeze(self):
126
- self.model = self.model.eval()
127
- for param in self.parameters():
128
- param.requires_grad = False
129
-
130
- # encode && encode_text
131
- def forward(self, tokens, return_mask=False, use_mask=True):
132
- # tokenization
133
- embedding_context = nullcontext if self.use_grad else torch.no_grad
134
- with embedding_context():
135
- if use_mask:
136
- x = self.model(tokens.input_ids.to(we.device_id),
137
- tokens.attention_mask.to(we.device_id))
138
- else:
139
- x = self.model(tokens.input_ids.to(we.device_id))
140
- x = x.last_hidden_state
141
-
142
- if return_mask:
143
- return x.detach() + 0.0, tokens.attention_mask.to(we.device_id)
144
- else:
145
- return x.detach() + 0.0, None
146
-
147
- def _clean(self, text):
148
- if self.clean == 'whitespace':
149
- text = whitespace_clean(basic_clean(text))
150
- elif self.clean == 'lower':
151
- text = whitespace_clean(basic_clean(text)).lower()
152
- elif self.clean == 'canonicalize':
153
- text = canonicalize(basic_clean(text))
154
- elif self.clean == 'heavy':
155
- text = heavy_clean(basic_clean(text))
156
- return text
157
-
158
- def encode(self, text, return_mask=False, use_mask=True):
159
- if isinstance(text, str):
160
- text = [text]
161
- if self.clean:
162
- text = [self._clean(u) for u in text]
163
- assert self.tokenizer is not None
164
- cont, mask = [], []
165
- with torch.autocast(device_type='cuda',
166
- enabled=self.t5_dtype in ('float16', 'bfloat16'),
167
- dtype=getattr(torch, self.t5_dtype)):
168
- for tt in text:
169
- tokens = self.tokenizer([tt], **self.tokenize_kargs)
170
- one_cont, one_mask = self(tokens,
171
- return_mask=return_mask,
172
- use_mask=use_mask)
173
- cont.append(one_cont)
174
- mask.append(one_mask)
175
- if return_mask:
176
- return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
177
- else:
178
- return torch.cat(cont, dim=0)
179
-
180
- def encode_list(self, text_list, return_mask=True):
181
- cont_list = []
182
- mask_list = []
183
- for pp in text_list:
184
- cont, cont_mask = self.encode(pp, return_mask=return_mask)
185
- cont_list.append(cont)
186
- mask_list.append(cont_mask)
187
- if return_mask:
188
- return cont_list, mask_list
189
- else:
190
- return cont_list
191
-
192
- @staticmethod
193
- def get_config_template():
194
- return dict_to_yaml('MODELS',
195
- __class__.__name__,
196
- ACETextEmbedder.para_dict,
197
- set_name=True)
198
-
199
- @EMBEDDERS.register_class()
200
- class ACEHFEmbedder(BaseEmbedder):
201
- para_dict = {
202
- "HF_MODEL_CLS": {
203
- "value": None,
204
- "description": "huggingface cls in transfomer"
205
- },
206
- "MODEL_PATH": {
207
- "value": None,
208
- "description": "model folder path"
209
- },
210
- "HF_TOKENIZER_CLS": {
211
- "value": None,
212
- "description": "huggingface cls in transfomer"
213
- },
214
-
215
- "TOKENIZER_PATH": {
216
- "value": None,
217
- "description": "tokenizer folder path"
218
- },
219
- "MAX_LENGTH": {
220
- "value": 77,
221
- "description": "max length of input"
222
- },
223
- "OUTPUT_KEY": {
224
- "value": "last_hidden_state",
225
- "description": "output key"
226
- },
227
- "D_TYPE": {
228
- "value": "float",
229
- "description": "dtype"
230
- },
231
- "BATCH_INFER": {
232
- "value": False,
233
- "description": "batch infer"
234
- }
235
- }
236
- para_dict.update(BaseEmbedder.para_dict)
237
- def __init__(self, cfg, logger=None):
238
- super().__init__(cfg, logger=logger)
239
- hf_model_cls = cfg.get('HF_MODEL_CLS', None)
240
- model_path = cfg.get("MODEL_PATH", None)
241
- hf_tokenizer_cls = cfg.get('HF_TOKENIZER_CLS', None)
242
- tokenizer_path = cfg.get('TOKENIZER_PATH', None)
243
- self.max_length = cfg.get('MAX_LENGTH', 77)
244
- self.output_key = cfg.get("OUTPUT_KEY", "last_hidden_state")
245
- self.d_type = cfg.get("D_TYPE", "float")
246
- self.clean = cfg.get("CLEAN", "whitespace")
247
- self.batch_infer = cfg.get("BATCH_INFER", False)
248
- self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
249
- torch_dtype = getattr(torch, self.d_type)
250
-
251
- assert hf_model_cls is not None and hf_tokenizer_cls is not None
252
- assert model_path is not None and tokenizer_path is not None
253
- with FS.get_dir_to_local_dir(tokenizer_path, wait_finish=True) as local_path:
254
- self.tokenizer = getattr(transformers, hf_tokenizer_cls).from_pretrained(local_path,
255
- max_length = self.max_length,
256
- torch_dtype = torch_dtype,
257
- additional_special_tokens=self.added_identifier)
258
-
259
- with FS.get_dir_to_local_dir(model_path, wait_finish=True) as local_path:
260
- self.hf_module = getattr(transformers, hf_model_cls).from_pretrained(local_path, torch_dtype = torch_dtype)
261
-
262
-
263
- self.hf_module = self.hf_module.eval().requires_grad_(False)
264
-
265
- def forward(self, text: list[str], return_mask = False):
266
- batch_encoding = self.tokenizer(
267
- text,
268
- truncation=True,
269
- max_length=self.max_length,
270
- return_length=False,
271
- return_overflowing_tokens=False,
272
- padding="max_length",
273
- return_tensors="pt",
274
- )
275
-
276
- outputs = self.hf_module(
277
- input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
278
- attention_mask=None,
279
- output_hidden_states=False,
280
- )
281
- if return_mask:
282
- return outputs[self.output_key], batch_encoding['attention_mask'].to(self.hf_module.device)
283
- else:
284
- return outputs[self.output_key], None
285
-
286
- def encode(self, text, return_mask = False):
287
- if isinstance(text, str):
288
- text = [text]
289
- if self.clean:
290
- text = [self._clean(u) for u in text]
291
- if not self.batch_infer:
292
- cont, mask = [], []
293
- for tt in text:
294
- one_cont, one_mask = self([tt], return_mask=return_mask)
295
- cont.append(one_cont)
296
- mask.append(one_mask)
297
- if return_mask:
298
- return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
299
- else:
300
- return torch.cat(cont, dim=0)
301
- else:
302
- ret_data = self(text, return_mask = return_mask)
303
- if return_mask:
304
- return ret_data
305
- else:
306
- return ret_data[0]
307
-
308
- def encode_list(self, text_list, return_mask=True):
309
- cont_list = []
310
- mask_list = []
311
- for pp in text_list:
312
- cont = self.encode(pp, return_mask=return_mask)
313
- cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
314
- mask_list.append(cont[1]) if return_mask else mask_list.append(None)
315
- if return_mask:
316
- return cont_list, mask_list
317
- else:
318
- return cont_list
319
-
320
- def encode_list_of_list(self, text_list, return_mask=True):
321
- cont_list = []
322
- mask_list = []
323
- for pp in text_list:
324
- cont = self.encode_list(pp, return_mask=return_mask)
325
- cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
326
- mask_list.append(cont[1]) if return_mask else mask_list.append(None)
327
- if return_mask:
328
- return cont_list, mask_list
329
- else:
330
- return cont_list
331
-
332
- def _clean(self, text):
333
- if self.clean == 'whitespace':
334
- text = whitespace_clean(basic_clean(text))
335
- elif self.clean == 'lower':
336
- text = whitespace_clean(basic_clean(text)).lower()
337
- elif self.clean == 'canonicalize':
338
- text = canonicalize(basic_clean(text))
339
- return text
340
- @staticmethod
341
- def get_config_template():
342
- return dict_to_yaml('EMBEDDER',
343
- __class__.__name__,
344
- ACEHFEmbedder.para_dict,
345
- set_name=True)
346
-
347
- @EMBEDDERS.register_class()
348
- class T5ACEPlusClipFluxEmbedder(BaseEmbedder):
349
- """
350
- Uses the OpenCLIP transformer encoder for text
351
- """
352
- para_dict = {
353
- 'T5_MODEL': {},
354
- 'CLIP_MODEL': {}
355
- }
356
-
357
- def __init__(self, cfg, logger=None):
358
- super().__init__(cfg, logger=logger)
359
- self.t5_model = EMBEDDERS.build(cfg.T5_MODEL, logger=logger)
360
- self.clip_model = EMBEDDERS.build(cfg.CLIP_MODEL, logger=logger)
361
-
362
- def encode(self, text, return_mask = False):
363
- t5_embeds = self.t5_model.encode(text, return_mask = return_mask)
364
- clip_embeds = self.clip_model.encode(text, return_mask = return_mask)
365
- # change embedding strategy here
366
- return {
367
- 'context': t5_embeds,
368
- 'y': clip_embeds,
369
- }
370
-
371
- def encode_list(self, text, return_mask = False):
372
- t5_embeds = self.t5_model.encode_list(text, return_mask = return_mask)
373
- clip_embeds = self.clip_model.encode_list(text, return_mask = return_mask)
374
- # change embedding strategy here
375
- return {
376
- 'context': t5_embeds,
377
- 'y': clip_embeds,
378
- }
379
-
380
- def encode_list_of_list(self, text, return_mask = False):
381
- t5_embeds = self.t5_model.encode_list_of_list(text, return_mask = return_mask)
382
- clip_embeds = self.clip_model.encode_list_of_list(text, return_mask = return_mask)
383
- # change embedding strategy here
384
- return {
385
- 'context': t5_embeds,
386
- 'y': clip_embeds,
387
- }
388
-
389
-
390
- @staticmethod
391
- def get_config_template():
392
- return dict_to_yaml('EMBEDDER',
393
- __class__.__name__,
394
- T5ACEPlusClipFluxEmbedder.para_dict,
395
- set_name=True)
396
-
397
- @BACKBONES.register_class()
398
- class Flux(BaseModel):
399
- """
400
- Transformer backbone Diffusion model with RoPE.
401
- """
402
- para_dict = {
403
- "IN_CHANNELS": {
404
- "value": 64,
405
- "description": "model's input channels."
406
- },
407
- "OUT_CHANNELS": {
408
- "value": 64,
409
- "description": "model's output channels."
410
- },
411
- "HIDDEN_SIZE": {
412
- "value": 1024,
413
- "description": "model's hidden size."
414
- },
415
- "NUM_HEADS": {
416
- "value": 16,
417
- "description": "number of heads in the transformer."
418
- },
419
- "AXES_DIM": {
420
- "value": [16, 56, 56],
421
- "description": "dimensions of the axes of the positional encoding."
422
- },
423
- "THETA": {
424
- "value": 10_000,
425
- "description": "theta for positional encoding."
426
- },
427
- "VEC_IN_DIM": {
428
- "value": 768,
429
- "description": "dimension of the vector input."
430
- },
431
- "GUIDANCE_EMBED": {
432
- "value": False,
433
- "description": "whether to use guidance embedding."
434
- },
435
- "CONTEXT_IN_DIM": {
436
- "value": 4096,
437
- "description": "dimension of the context input."
438
- },
439
- "MLP_RATIO": {
440
- "value": 4.0,
441
- "description": "ratio of mlp hidden size to hidden size."
442
- },
443
- "QKV_BIAS": {
444
- "value": True,
445
- "description": "whether to use bias in qkv projection."
446
- },
447
- "DEPTH": {
448
- "value": 19,
449
- "description": "number of transformer blocks."
450
- },
451
- "DEPTH_SINGLE_BLOCKS": {
452
- "value": 38,
453
- "description": "number of transformer blocks in the single stream block."
454
- },
455
- "USE_GRAD_CHECKPOINT": {
456
- "value": False,
457
- "description": "whether to use gradient checkpointing."
458
- },
459
- "ATTN_BACKEND": {
460
- "value": "pytorch",
461
- "description": "backend for the transformer blocks, 'pytorch' or 'flash_attn'."
462
- }
463
- }
464
- def __init__(
465
- self,
466
- cfg,
467
- logger = None
468
- ):
469
- super().__init__(cfg, logger=logger)
470
- self.in_channels = cfg.IN_CHANNELS
471
- self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels)
472
- hidden_size = cfg.get("HIDDEN_SIZE", 1024)
473
- num_heads = cfg.get("NUM_HEADS", 16)
474
- axes_dim = cfg.AXES_DIM
475
- theta = cfg.THETA
476
- vec_in_dim = cfg.VEC_IN_DIM
477
- self.guidance_embed = cfg.GUIDANCE_EMBED
478
- context_in_dim = cfg.CONTEXT_IN_DIM
479
- mlp_ratio = cfg.MLP_RATIO
480
- qkv_bias = cfg.QKV_BIAS
481
- depth = cfg.DEPTH
482
- depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS
483
- self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False)
484
- self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch")
485
- self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None)
486
- self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None)
487
- self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None)
488
-
489
- if hidden_size % num_heads != 0:
490
- raise ValueError(
491
- f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
492
- )
493
- pe_dim = hidden_size // num_heads
494
- if sum(axes_dim) != pe_dim:
495
- raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
496
- self.hidden_size = hidden_size
497
- self.num_heads = num_heads
498
- self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim= axes_dim)
499
- self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
500
- self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
501
- self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
502
- self.guidance_in = (
503
- MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity()
504
- )
505
- self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
506
-
507
- self.double_blocks = nn.ModuleList(
508
- [
509
- DoubleStreamBlock(
510
- self.hidden_size,
511
- self.num_heads,
512
- mlp_ratio=mlp_ratio,
513
- qkv_bias=qkv_bias,
514
- backend=self.attn_backend
515
- )
516
- for _ in range(depth)
517
- ]
518
- )
519
-
520
- self.single_blocks = nn.ModuleList(
521
- [
522
- SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend)
523
- for _ in range(depth_single_blocks)
524
- ]
525
- )
526
-
527
- self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
528
-
529
- def prepare_input(self, x, context, y, x_shape=None):
530
- # x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360]
531
- bs, c, h, w = x.shape
532
- x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
533
- x_id = torch.zeros(h // 2, w // 2, 3)
534
- x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None]
535
- x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :]
536
- x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs)
537
- txt_ids = torch.zeros(bs, context.shape[1], 3)
538
- return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w
539
-
540
- def unpack(self, x: Tensor, height: int, width: int) -> Tensor:
541
- return rearrange(
542
- x,
543
- "b (h w) (c ph pw) -> b c (h ph) (w pw)",
544
- h=math.ceil(height/2),
545
- w=math.ceil(width/2),
546
- ph=2,
547
- pw=2,
548
- )
549
-
550
- def merge_diffuser_lora(self, ori_sd, lora_sd, scale = 1.0):
551
- key_map = {
552
- "single_blocks.{}.linear1.weight": {"key_list": [
553
- ["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight",
554
- "transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight"],
555
- ["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight",
556
- "transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight"],
557
- ["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight",
558
- "transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight"],
559
- ["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight",
560
- "transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight"]
561
- ], "num": 38},
562
- "single_blocks.{}.modulation.lin.weight": {"key_list": [
563
- ["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight",
564
- "transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight"],
565
- ], "num": 38},
566
- "single_blocks.{}.linear2.weight": {"key_list": [
567
- ["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight",
568
- "transformer.single_transformer_blocks.{}.proj_out.lora_B.weight"],
569
- ], "num": 38},
570
- "double_blocks.{}.txt_attn.qkv.weight": {"key_list": [
571
- ["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight",
572
- "transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight"],
573
- ["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight",
574
- "transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight"],
575
- ["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight",
576
- "transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight"],
577
- ], "num": 19},
578
- "double_blocks.{}.img_attn.qkv.weight": {"key_list": [
579
- ["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight",
580
- "transformer.transformer_blocks.{}.attn.to_q.lora_B.weight"],
581
- ["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight",
582
- "transformer.transformer_blocks.{}.attn.to_k.lora_B.weight"],
583
- ["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight",
584
- "transformer.transformer_blocks.{}.attn.to_v.lora_B.weight"],
585
- ], "num": 19},
586
- "double_blocks.{}.img_attn.proj.weight": {"key_list": [
587
- ["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight",
588
- "transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight"]
589
- ], "num": 19},
590
- "double_blocks.{}.txt_attn.proj.weight": {"key_list": [
591
- ["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight",
592
- "transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight"]
593
- ], "num": 19},
594
- "double_blocks.{}.img_mlp.0.weight": {"key_list": [
595
- ["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight",
596
- "transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight"]
597
- ], "num": 19},
598
- "double_blocks.{}.img_mlp.2.weight": {"key_list": [
599
- ["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight",
600
- "transformer.transformer_blocks.{}.ff.net.2.lora_B.weight"]
601
- ], "num": 19},
602
- "double_blocks.{}.txt_mlp.0.weight": {"key_list": [
603
- ["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight",
604
- "transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight"]
605
- ], "num": 19},
606
- "double_blocks.{}.txt_mlp.2.weight": {"key_list": [
607
- ["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight",
608
- "transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight"]
609
- ], "num": 19},
610
- "double_blocks.{}.img_mod.lin.weight": {"key_list": [
611
- ["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight",
612
- "transformer.transformer_blocks.{}.norm1.linear.lora_B.weight"]
613
- ], "num": 19},
614
- "double_blocks.{}.txt_mod.lin.weight": {"key_list": [
615
- ["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight",
616
- "transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight"]
617
- ], "num": 19}
618
- }
619
- for k, v in key_map.items():
620
- key_list = v["key_list"]
621
- block_num = v["num"]
622
- for block_id in range(block_num):
623
- current_weight_list = []
624
- for k_list in key_list:
625
- current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0),
626
- lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0)
627
- current_weight_list.append(current_weight)
628
- current_weight = torch.cat(current_weight_list, dim=0)
629
- ori_sd[k.format(block_id)] += scale*current_weight
630
- return ori_sd
631
-
632
- def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0):
633
- have_lora_keys = {}
634
- for k, v in lora_sd.items():
635
- k = k[len("model."):] if k.startswith("model.") else k
636
- ori_key = k.split("lora")[0] + "weight"
637
- if ori_key not in ori_sd:
638
- raise f"{ori_key} should in the original statedict"
639
- if ori_key not in have_lora_keys:
640
- have_lora_keys[ori_key] = {}
641
- if "lora_A" in k:
642
- have_lora_keys[ori_key]["lora_A"] = v
643
- elif "lora_B" in k:
644
- have_lora_keys[ori_key]["lora_B"] = v
645
- else:
646
- raise NotImplementedError
647
- for key, v in have_lora_keys.items():
648
- current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
649
- ori_sd[key] += scale * current_weight
650
- return ori_sd
651
-
652
-
653
- def load_pretrained_model(self, pretrained_model):
654
- if next(self.parameters()).device.type == 'meta':
655
- map_location = torch.device(we.device_id)
656
- else:
657
- map_location = "cpu"
658
- if self.lora_model is not None:
659
- map_location = we.device_id
660
- if pretrained_model is not None:
661
- with FS.get_from(pretrained_model, wait_finish=True) as local_model:
662
- if local_model.endswith('safetensors'):
663
- from safetensors.torch import load_file as load_safetensors
664
- sd = load_safetensors(local_model, device=map_location)
665
- else:
666
- sd = torch.load(local_model, map_location=map_location)
667
- if "state_dict" in sd:
668
- sd = sd["state_dict"]
669
- if "model" in sd:
670
- sd = sd["model"]["model"]
671
-
672
- if self.lora_model is not None:
673
- with FS.get_from(self.lora_model, wait_finish=True) as local_model:
674
- if local_model.endswith('safetensors'):
675
- from safetensors.torch import load_file as load_safetensors
676
- lora_sd = load_safetensors(local_model, device=map_location)
677
- else:
678
- lora_sd = torch.load(local_model, map_location=map_location)
679
- sd = self.merge_diffuser_lora(sd, lora_sd)
680
- if self.swift_lora_model is not None:
681
- with FS.get_from(self.swift_lora_model, wait_finish=True) as local_model:
682
- if local_model.endswith('safetensors'):
683
- from safetensors.torch import load_file as load_safetensors
684
- lora_sd = load_safetensors(local_model, device=map_location)
685
- else:
686
- lora_sd = torch.load(local_model, map_location=map_location)
687
- sd = self.merge_swift_lora(sd, lora_sd)
688
-
689
- adapter_ckpt = {}
690
- if self.pretrain_adapter is not None:
691
- with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter:
692
- if local_model.endswith('safetensors'):
693
- from safetensors.torch import load_file as load_safetensors
694
- adapter_ckpt = load_safetensors(local_adapter, device=map_location)
695
- else:
696
- adapter_ckpt = torch.load(local_adapter, map_location=map_location)
697
- sd.update(adapter_ckpt)
698
-
699
-
700
- new_ckpt = OrderedDict()
701
- for k, v in sd.items():
702
- if k in ("img_in.weight"):
703
- model_p = self.state_dict()[k]
704
- if v.shape != model_p.shape:
705
- model_p.zero_()
706
- model_p[:, :64].copy_(v[:, :64])
707
- new_ckpt[k] = torch.nn.parameter.Parameter(model_p)
708
- else:
709
- new_ckpt[k] = v
710
- else:
711
- new_ckpt[k] = v
712
-
713
-
714
- missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True)
715
- self.logger.info(
716
- f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys'
717
- )
718
- if len(missing) > 0:
719
- self.logger.info(f'Missing Keys:\n {missing}')
720
- if len(unexpected) > 0:
721
- self.logger.info(f'\nUnexpected Keys:\n {unexpected}')
722
-
723
- def forward(
724
- self,
725
- x: Tensor,
726
- t: Tensor,
727
- cond: dict = {},
728
- guidance: Tensor | None = None,
729
- gc_seg: int = 0
730
- ) -> Tensor:
731
- x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"])
732
- # running on sequences img
733
- x = self.img_in(x)
734
- vec = self.time_in(timestep_embedding(t, 256))
735
- if self.guidance_embed:
736
- if guidance is None:
737
- raise ValueError("Didn't get guidance strength for guidance distilled model.")
738
- vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
739
- vec = vec + self.vector_in(y)
740
- txt = self.txt_in(txt)
741
- ids = torch.cat((txt_ids, x_ids), dim=1)
742
- pe = self.pe_embedder(ids)
743
- kwargs = dict(
744
- vec=vec,
745
- pe=pe,
746
- txt_length=txt.shape[1],
747
- )
748
- x = torch.cat((txt, x), 1)
749
- if self.use_grad_checkpoint and gc_seg >= 0:
750
- x = checkpoint_sequential(
751
- functions=[partial(block, **kwargs) for block in self.double_blocks],
752
- segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
753
- input=x,
754
- use_reentrant=False
755
- )
756
- else:
757
- for block in self.double_blocks:
758
- x = block(x, **kwargs)
759
-
760
- kwargs = dict(
761
- vec=vec,
762
- pe=pe,
763
- )
764
-
765
- if self.use_grad_checkpoint and gc_seg >= 0:
766
- x = checkpoint_sequential(
767
- functions=[partial(block, **kwargs) for block in self.single_blocks],
768
- segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
769
- input=x,
770
- use_reentrant=False
771
- )
772
- else:
773
- for block in self.single_blocks:
774
- x = block(x, **kwargs)
775
- x = x[:, txt.shape[1] :, ...]
776
- x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
777
- x = self.unpack(x, h, w)
778
- return x
779
-
780
- @staticmethod
781
- def get_config_template():
782
- return dict_to_yaml('MODEL',
783
- __class__.__name__,
784
- Flux.para_dict,
785
- set_name=True)
786
-
787
- @BACKBONES.register_class()
788
- class FluxMR(Flux):
789
- def prepare_input(self, x, cond):
790
- if isinstance(cond['context'], list):
791
- context, y = torch.cat(cond["context"], dim=0).to(x), torch.cat(cond["y"], dim=0).to(x)
792
- else:
793
- context, y = cond['context'].to(x), cond['y'].to(x)
794
- batch_frames, batch_frames_ids = [], []
795
- for ix, shape in zip(x, cond["x_shapes"]):
796
- # unpack image from sequence
797
- ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
798
- c, h, w = ix.shape
799
- ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
800
- ix_id = torch.zeros(h // 2, w // 2, 3)
801
- ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
802
- ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
803
- ix_id = rearrange(ix_id, "h w c -> (h w) c")
804
- batch_frames.append([ix])
805
- batch_frames_ids.append([ix_id])
806
-
807
- x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
808
- for frames, frame_ids in zip(batch_frames, batch_frames_ids):
809
- proj_frames = []
810
- for idx, one_frame in enumerate(frames):
811
- one_frame = self.img_in(one_frame)
812
- proj_frames.append(one_frame)
813
- ix = torch.cat(proj_frames, dim=0)
814
- if_id = torch.cat(frame_ids, dim=0)
815
- x_list.append(ix)
816
- x_id_list.append(if_id)
817
- mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
818
- x_seq_length.append(ix.shape[0])
819
- x = pad_sequence(tuple(x_list), batch_first=True)
820
- x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
821
- mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
822
-
823
- txt = self.txt_in(context)
824
- txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
825
- mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
826
-
827
- return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
828
-
829
- def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor:
830
- x_list = []
831
- image_shapes = cond["x_shapes"]
832
- for u, shape, seq_length in zip(x, image_shapes, x_seq_length):
833
- height, width = shape
834
- h, w = math.ceil(height / 2), math.ceil(width / 2)
835
- u = rearrange(
836
- u[seq_length-h*w:seq_length, ...],
837
- "(h w) (c ph pw) -> (h ph w pw) c",
838
- h=h,
839
- w=w,
840
- ph=2,
841
- pw=2,
842
- )
843
- x_list.append(u)
844
- x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1)
845
- return x
846
-
847
- def forward(
848
- self,
849
- x: Tensor,
850
- t: Tensor,
851
- cond: dict = {},
852
- guidance: Tensor | None = None,
853
- gc_seg: int = 0,
854
- **kwargs
855
- ) -> Tensor:
856
- x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond)
857
- # running on sequences img
858
- vec = self.time_in(timestep_embedding(t, 256))
859
- if self.guidance_embed:
860
- if guidance is None:
861
- raise ValueError("Didn't get guidance strength for guidance distilled model.")
862
- vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
863
- vec = vec + self.vector_in(y)
864
- ids = torch.cat((txt_ids, x_ids), dim=1)
865
- pe = self.pe_embedder(ids)
866
-
867
- mask_aside = torch.cat((mask_txt, mask_x), dim=1)
868
- mask = mask_aside[:, None, :] * mask_aside[:, :, None]
869
-
870
- kwargs = dict(
871
- vec=vec,
872
- pe=pe,
873
- mask=mask,
874
- txt_length = txt.shape[1],
875
- )
876
- x = torch.cat((txt, x), 1)
877
- if self.use_grad_checkpoint and gc_seg >= 0:
878
- x = checkpoint_sequential(
879
- functions=[partial(block, **kwargs) for block in self.double_blocks],
880
- segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
881
- input=x,
882
- use_reentrant=False
883
- )
884
- else:
885
- for block in self.double_blocks:
886
- x = block(x, **kwargs)
887
-
888
- kwargs = dict(
889
- vec=vec,
890
- pe=pe,
891
- mask=mask,
892
- )
893
-
894
- if self.use_grad_checkpoint and gc_seg >= 0:
895
- x = checkpoint_sequential(
896
- functions=[partial(block, **kwargs) for block in self.single_blocks],
897
- segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
898
- input=x,
899
- use_reentrant=False
900
- )
901
- else:
902
- for block in self.single_blocks:
903
- x = block(x, **kwargs)
904
- x = x[:, txt.shape[1]:, ...]
905
- x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
906
- x = self.unpack(x, cond, seq_length_list)
907
- return x
908
-
909
- @staticmethod
910
- def get_config_template():
911
- return dict_to_yaml('MODEL',
912
- __class__.__name__,
913
- FluxEdit.para_dict,
914
- set_name=True)
915
- @BACKBONES.register_class()
916
- class FluxEdit(FluxMR):
917
- def prepare_input(self, x, cond, *args, **kwargs):
918
- context, y = cond["context"], cond["y"]
919
- batch_frames, batch_frames_ids, batch_shift = [], [], []
920
-
921
- for ix, shape, is_align in zip(x, cond["x_shapes"], cond['align']):
922
- # unpack image from sequence
923
- ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
924
- c, h, w = ix.shape
925
- ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
926
- ix_id = torch.zeros(h // 2, w // 2, 3)
927
- ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
928
- ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
929
- batch_shift.append(h // 2) #if is_align < 1 else batch_shift.append(0)
930
- ix_id = rearrange(ix_id, "h w c -> (h w) c")
931
- batch_frames.append([ix])
932
- batch_frames_ids.append([ix_id])
933
- if 'edit_x' in cond:
934
- for i, edit in enumerate(cond['edit_x']):
935
- if edit is None:
936
- continue
937
- for ie in edit:
938
- ie = ie.squeeze(0)
939
- c, h, w = ie.shape
940
- ie = rearrange(ie, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
941
- ie_id = torch.zeros(h // 2, w // 2, 3)
942
- ie_id[..., 1] = ie_id[..., 1] + torch.arange(batch_shift[i], h // 2 + batch_shift[i])[:, None]
943
- ie_id[..., 2] = ie_id[..., 2] + torch.arange(w // 2)[None, :]
944
- ie_id = rearrange(ie_id, "h w c -> (h w) c")
945
- batch_frames[i].append(ie)
946
- batch_frames_ids[i].append(ie_id)
947
-
948
- x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
949
- for frames, frame_ids in zip(batch_frames, batch_frames_ids):
950
- proj_frames = []
951
- for idx, one_frame in enumerate(frames):
952
- one_frame = self.img_in(one_frame)
953
- proj_frames.append(one_frame)
954
- ix = torch.cat(proj_frames, dim=0)
955
- if_id = torch.cat(frame_ids, dim=0)
956
- x_list.append(ix)
957
- x_id_list.append(if_id)
958
- mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
959
- x_seq_length.append(ix.shape[0])
960
- x = pad_sequence(tuple(x_list), batch_first=True)
961
- x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
962
- mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
963
-
964
- txt_list, mask_txt_list, y_list = [], [], []
965
- for sample_id, (ctx, yy) in enumerate(zip(context, y)):
966
- ctx_batch = []
967
- for frame_id, one_ctx in enumerate(ctx):
968
- one_ctx = self.txt_in(one_ctx.to(x))
969
- ctx_batch.append(one_ctx)
970
- txt_list.append(torch.cat(ctx_batch, dim=0))
971
- mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool())
972
- y_list.append(yy.mean(dim = 0, keepdim=True))
973
- txt = pad_sequence(tuple(txt_list), batch_first=True)
974
- txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x)
975
- mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True)
976
- y = torch.cat(y_list, dim=0)
977
- return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
978
-
979
- def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor:
980
- x_list = []
981
- image_shapes = cond["x_shapes"]
982
- for u, shape, seq_length in zip(x, image_shapes, x_seq_length):
983
- height, width = shape
984
- h, w = math.ceil(height / 2), math.ceil(width / 2)
985
- u = rearrange(
986
- u[:h*w, ...],
987
- "(h w) (c ph pw) -> (h ph w pw) c",
988
- h=h,
989
- w=w,
990
- ph=2,
991
- pw=2,
992
- )
993
- x_list.append(u)
994
- x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1)
995
- return x
996
-
997
- def forward(
998
- self,
999
- x: Tensor,
1000
- t: Tensor,
1001
- cond: dict = {},
1002
- guidance: Tensor | None = None,
1003
- gc_seg: int = 0,
1004
- text_position_embeddings = None
1005
- ) -> Tensor:
1006
- x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond, text_position_embeddings)
1007
- # running on sequences img
1008
- vec = self.time_in(timestep_embedding(t, 256))
1009
- if self.guidance_embed:
1010
- if guidance is None:
1011
- raise ValueError("Didn't get guidance strength for guidance distilled model.")
1012
- vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
1013
- vec = vec + self.vector_in(y)
1014
- ids = torch.cat((txt_ids, x_ids), dim=1)
1015
- pe = self.pe_embedder(ids)
1016
-
1017
- mask_aside = torch.cat((mask_txt, mask_x), dim=1)
1018
- mask = mask_aside[:, None, :] * mask_aside[:, :, None]
1019
-
1020
- kwargs = dict(
1021
- vec=vec,
1022
- pe=pe,
1023
- mask=mask,
1024
- txt_length = txt.shape[1],
1025
- )
1026
- x = torch.cat((txt, x), 1)
1027
-
1028
- if self.use_grad_checkpoint and gc_seg >= 0:
1029
- x = checkpoint_sequential(
1030
- functions=[partial(block, **kwargs) for block in self.double_blocks],
1031
- segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
1032
- input=x,
1033
- use_reentrant=False
1034
- )
1035
- else:
1036
- for block in self.double_blocks:
1037
- x = block(x, **kwargs)
1038
-
1039
- kwargs = dict(
1040
- vec=vec,
1041
- pe=pe,
1042
- mask=mask,
1043
- )
1044
-
1045
- if self.use_grad_checkpoint and gc_seg >= 0:
1046
- x = checkpoint_sequential(
1047
- functions=[partial(block, **kwargs) for block in self.single_blocks],
1048
- segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
1049
- input=x,
1050
- use_reentrant=False
1051
- )
1052
- else:
1053
- for block in self.single_blocks:
1054
- x = block(x, **kwargs)
1055
- x = x[:, txt.shape[1]:, ...]
1056
- x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
1057
- x = self.unpack(x, cond, seq_length_list)
1058
- return x
1059
- @staticmethod
1060
- def get_config_template():
1061
- return dict_to_yaml('MODEL',
1062
- __class__.__name__,
1063
- FluxEdit.para_dict,
1064
- set_name=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model/layers.py DELETED
@@ -1,356 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import math
4
- from dataclasses import dataclass
5
- from torch import Tensor, nn
6
- import torch
7
- from einops import rearrange, repeat
8
- from torch import Tensor
9
- from torch.nn.utils.rnn import pad_sequence
10
-
11
- try:
12
- from flash_attn import (
13
- flash_attn_varlen_func
14
- )
15
- FLASHATTN_IS_AVAILABLE = True
16
- except ImportError:
17
- FLASHATTN_IS_AVAILABLE = False
18
- flash_attn_varlen_func = None
19
-
20
- def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask: Tensor | None = None, backend = 'pytorch') -> Tensor:
21
- q, k = apply_rope(q, k, pe)
22
- if backend == 'pytorch':
23
- if mask is not None and mask.dtype == torch.bool:
24
- mask = torch.zeros_like(mask).to(q).masked_fill_(mask.logical_not(), -1e20)
25
- x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask)
26
- # x = torch.nan_to_num(x, nan=0.0, posinf=1e10, neginf=-1e10)
27
- x = rearrange(x, "B H L D -> B L (H D)")
28
- elif backend == 'flash_attn':
29
- # q: (B, H, L, D)
30
- # k: (B, H, S, D) now L = S
31
- # v: (B, H, S, D)
32
- b, h, lq, d = q.shape
33
- _, _, lk, _ = k.shape
34
- q = rearrange(q, "B H L D -> B L H D")
35
- k = rearrange(k, "B H S D -> B S H D")
36
- v = rearrange(v, "B H S D -> B S H D")
37
- if mask is None:
38
- q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(q.device, non_blocking=True)
39
- k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(k.device, non_blocking=True)
40
- else:
41
- q_lens = torch.sum(mask[:, 0, :, 0], dim=1).int()
42
- k_lens = torch.sum(mask[:, 0, 0, :], dim=1).int()
43
- q = torch.cat([q_v[:q_l] for q_v, q_l in zip(q, q_lens)])
44
- k = torch.cat([k_v[:k_l] for k_v, k_l in zip(k, k_lens)])
45
- v = torch.cat([v_v[:v_l] for v_v, v_l in zip(v, k_lens)])
46
- cu_seqlens_q = torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32)
47
- cu_seqlens_k = torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32)
48
- max_seqlen_q = q_lens.max()
49
- max_seqlen_k = k_lens.max()
50
-
51
- x = flash_attn_varlen_func(
52
- q,
53
- k,
54
- v,
55
- cu_seqlens_q=cu_seqlens_q,
56
- cu_seqlens_k=cu_seqlens_k,
57
- max_seqlen_q=max_seqlen_q,
58
- max_seqlen_k=max_seqlen_k
59
- )
60
- x_list = [x[cu_seqlens_q[i]:cu_seqlens_q[i+1]] for i in range(b)]
61
- x = pad_sequence(tuple(x_list), batch_first=True)
62
- x = rearrange(x, "B L H D -> B L (H D)")
63
- else:
64
- raise NotImplementedError
65
- return x
66
-
67
-
68
- def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
69
- assert dim % 2 == 0
70
- scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
71
- omega = 1.0 / (theta**scale)
72
- out = torch.einsum("...n,d->...nd", pos, omega)
73
- out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
74
- out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
75
- return out.float()
76
-
77
-
78
- def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
79
- xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
80
- xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
81
- xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
82
- xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
83
- return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
84
-
85
- class EmbedND(nn.Module):
86
- def __init__(self, dim: int, theta: int, axes_dim: list[int]):
87
- super().__init__()
88
- self.dim = dim
89
- self.theta = theta
90
- self.axes_dim = axes_dim
91
-
92
- def forward(self, ids: Tensor) -> Tensor:
93
- n_axes = ids.shape[-1]
94
- emb = torch.cat(
95
- [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
96
- dim=-3,
97
- )
98
-
99
- return emb.unsqueeze(1)
100
-
101
-
102
- def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
103
- """
104
- Create sinusoidal timestep embeddings.
105
- :param t: a 1-D Tensor of N indices, one per batch element.
106
- These may be fractional.
107
- :param dim: the dimension of the output.
108
- :param max_period: controls the minimum frequency of the embeddings.
109
- :return: an (N, D) Tensor of positional embeddings.
110
- """
111
- t = time_factor * t
112
- half = dim // 2
113
- freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
114
- t.device
115
- )
116
-
117
- args = t[:, None].float() * freqs[None]
118
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
119
- if dim % 2:
120
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
121
- if torch.is_floating_point(t):
122
- embedding = embedding.to(t)
123
- return embedding
124
-
125
-
126
- class MLPEmbedder(nn.Module):
127
- def __init__(self, in_dim: int, hidden_dim: int):
128
- super().__init__()
129
- self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
130
- self.silu = nn.SiLU()
131
- self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
132
-
133
- def forward(self, x: Tensor) -> Tensor:
134
- return self.out_layer(self.silu(self.in_layer(x)))
135
-
136
-
137
- class RMSNorm(torch.nn.Module):
138
- def __init__(self, dim: int):
139
- super().__init__()
140
- self.scale = nn.Parameter(torch.ones(dim))
141
-
142
- def forward(self, x: Tensor):
143
- x_dtype = x.dtype
144
- x = x.float()
145
- rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
146
- return (x * rrms).to(dtype=x_dtype) * self.scale
147
-
148
-
149
- class QKNorm(torch.nn.Module):
150
- def __init__(self, dim: int):
151
- super().__init__()
152
- self.query_norm = RMSNorm(dim)
153
- self.key_norm = RMSNorm(dim)
154
-
155
- def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
156
- q = self.query_norm(q)
157
- k = self.key_norm(k)
158
- return q.to(v), k.to(v)
159
-
160
-
161
- class SelfAttention(nn.Module):
162
- def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
163
- super().__init__()
164
- self.num_heads = num_heads
165
- head_dim = dim // num_heads
166
-
167
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
168
- self.norm = QKNorm(head_dim)
169
- self.proj = nn.Linear(dim, dim)
170
-
171
- def forward(self, x: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor:
172
- qkv = self.qkv(x)
173
- q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
174
- q, k = self.norm(q, k, v)
175
- x = attention(q, k, v, pe=pe, mask=mask)
176
- x = self.proj(x)
177
- return x
178
-
179
- class CrossAttention(nn.Module):
180
- def __init__(self, dim: int, context_dim: int, num_heads: int = 8, qkv_bias: bool = False):
181
- super().__init__()
182
- self.num_heads = num_heads
183
- head_dim = dim // num_heads
184
- self.q = nn.Linear(dim, dim, bias=qkv_bias)
185
- self.kv = nn.Linear(dim, context_dim * 2, bias=qkv_bias)
186
- self.norm = QKNorm(head_dim)
187
- self.proj = nn.Linear(dim, dim)
188
-
189
- def forward(self, x: Tensor, context: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor:
190
- qkv = self.qkv(x)
191
- q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
192
- q, k = self.norm(q, k, v)
193
- x = attention(q, k, v, pe=pe, mask=mask)
194
- x = self.proj(x)
195
- return x
196
-
197
-
198
- @dataclass
199
- class ModulationOut:
200
- shift: Tensor
201
- scale: Tensor
202
- gate: Tensor
203
-
204
-
205
- class Modulation(nn.Module):
206
- def __init__(self, dim: int, double: bool):
207
- super().__init__()
208
- self.is_double = double
209
- self.multiplier = 6 if double else 3
210
- self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
211
-
212
- def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
213
- out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
214
-
215
- return (
216
- ModulationOut(*out[:3]),
217
- ModulationOut(*out[3:]) if self.is_double else None,
218
- )
219
-
220
-
221
- class DoubleStreamBlock(nn.Module):
222
- def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, backend = 'pytorch'):
223
- super().__init__()
224
-
225
- mlp_hidden_dim = int(hidden_size * mlp_ratio)
226
- self.num_heads = num_heads
227
- self.hidden_size = hidden_size
228
- self.img_mod = Modulation(hidden_size, double=True)
229
- self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
230
- self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
231
-
232
- self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
233
- self.img_mlp = nn.Sequential(
234
- nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
235
- nn.GELU(approximate="tanh"),
236
- nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
237
- )
238
-
239
- self.backend = backend
240
-
241
- self.txt_mod = Modulation(hidden_size, double=True)
242
- self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
243
- self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
244
-
245
- self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
246
- self.txt_mlp = nn.Sequential(
247
- nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
248
- nn.GELU(approximate="tanh"),
249
- nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
250
- )
251
-
252
-
253
-
254
-
255
- def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None, txt_length = None):
256
- img_mod1, img_mod2 = self.img_mod(vec)
257
- txt_mod1, txt_mod2 = self.txt_mod(vec)
258
-
259
- txt, img = x[:, :txt_length], x[:, txt_length:]
260
-
261
- # prepare image for attention
262
- img_modulated = self.img_norm1(img)
263
- img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
264
- img_qkv = self.img_attn.qkv(img_modulated)
265
- img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
266
- img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
267
- # prepare txt for attention
268
- txt_modulated = self.txt_norm1(txt)
269
- txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
270
- txt_qkv = self.txt_attn.qkv(txt_modulated)
271
- txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
272
- txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
273
-
274
- # run actual attention
275
- q = torch.cat((txt_q, img_q), dim=2)
276
- k = torch.cat((txt_k, img_k), dim=2)
277
- v = torch.cat((txt_v, img_v), dim=2)
278
- if mask is not None:
279
- mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads)
280
- attn = attention(q, k, v, pe=pe, mask = mask, backend = self.backend)
281
- txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
282
-
283
- # calculate the img bloks
284
- img = img + img_mod1.gate * self.img_attn.proj(img_attn)
285
- img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
286
-
287
- # calculate the txt bloks
288
- txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
289
- txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
290
- x = torch.cat((txt, img), 1)
291
- return x
292
-
293
-
294
- class SingleStreamBlock(nn.Module):
295
- """
296
- A DiT block with parallel linear layers as described in
297
- https://arxiv.org/abs/2302.05442 and adapted modulation interface.
298
- """
299
-
300
- def __init__(
301
- self,
302
- hidden_size: int,
303
- num_heads: int,
304
- mlp_ratio: float = 4.0,
305
- qk_scale: float | None = None,
306
- backend='pytorch'
307
- ):
308
- super().__init__()
309
- self.hidden_dim = hidden_size
310
- self.num_heads = num_heads
311
- head_dim = hidden_size // num_heads
312
- self.scale = qk_scale or head_dim**-0.5
313
-
314
- self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
315
- # qkv and mlp_in
316
- self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
317
- # proj and mlp_out
318
- self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
319
-
320
- self.norm = QKNorm(head_dim)
321
-
322
- self.hidden_size = hidden_size
323
- self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
324
-
325
- self.mlp_act = nn.GELU(approximate="tanh")
326
- self.modulation = Modulation(hidden_size, double=False)
327
- self.backend = backend
328
-
329
- def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None) -> Tensor:
330
- mod, _ = self.modulation(vec)
331
- x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
332
- qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
333
-
334
- q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
335
- q, k = self.norm(q, k, v)
336
- if mask is not None:
337
- mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads)
338
- # compute attention
339
- attn = attention(q, k, v, pe=pe, mask = mask, backend=self.backend)
340
- # compute activation in mlp stream, cat again and run second linear layer
341
- output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
342
- return x + mod.gate * output
343
-
344
-
345
- class LastLayer(nn.Module):
346
- def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
347
- super().__init__()
348
- self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
349
- self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
350
- self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
351
-
352
- def forward(self, x: Tensor, vec: Tensor) -> Tensor:
353
- shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
354
- x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
355
- x = self.linear(x)
356
- return x