Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
d1a539d
1
Parent(s):
f2838d1
modify ace plus
Browse files- config/ace_plus_fft.yaml +192 -0
- modules/__init__.py +6 -0
- modules/ace_plus_dataset.py +280 -0
- modules/ace_plus_ldm.py +451 -0
- modules/ace_plus_solver.py +181 -0
- modules/checkpoint.py +135 -0
- modules/embedder.py +219 -0
- modules/flux.py +812 -0
- modules/layers.py +521 -0
config/ace_plus_fft.yaml
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
NAME: ACEInference
|
2 |
+
DTYPE: bfloat16
|
3 |
+
VERSION: fft
|
4 |
+
IS_DEFAULT: True
|
5 |
+
MAX_SEQ_LEN: 4096
|
6 |
+
MODEL:
|
7 |
+
NAME: LatentDiffusionACEPlus
|
8 |
+
PARAMETERIZATION: rf
|
9 |
+
TIMESTEPS: 1000
|
10 |
+
GUIDE_SCALE: 1.0
|
11 |
+
PRETRAINED_MODEL:
|
12 |
+
IGNORE_KEYS: [ ]
|
13 |
+
USE_EMA: False
|
14 |
+
EVAL_EMA: False
|
15 |
+
SIZE_FACTOR: 8
|
16 |
+
DIFFUSION:
|
17 |
+
NAME: DiffusionFluxRF
|
18 |
+
PREDICTION_TYPE: raw
|
19 |
+
NOISE_NORM: True
|
20 |
+
# NOISE_SCHEDULER DESCRIPTION: TYPE: default: ''
|
21 |
+
NOISE_SCHEDULER:
|
22 |
+
NAME: FlowMatchFluxShiftScheduler
|
23 |
+
SHIFT: False
|
24 |
+
PRE_T_SAMPLE: True
|
25 |
+
PRE_T_SAMPLE_FOLD: 1
|
26 |
+
SIGMOID_SCALE: 1
|
27 |
+
BASE_SHIFT: 0.5
|
28 |
+
MAX_SHIFT: 1.15
|
29 |
+
SAMPLER_SCHEDULER:
|
30 |
+
NAME: FlowMatchFluxShiftScheduler
|
31 |
+
SHIFT: True
|
32 |
+
PRE_T_SAMPLE: False
|
33 |
+
SIGMOID_SCALE: 1
|
34 |
+
BASE_SHIFT: 0.5
|
35 |
+
MAX_SHIFT: 1.15
|
36 |
+
|
37 |
+
#
|
38 |
+
DIFFUSION_MODEL:
|
39 |
+
# NAME DESCRIPTION: TYPE: default: 'Flux'
|
40 |
+
NAME: FluxMRModiACEPlus
|
41 |
+
PRETRAINED_MODEL: ${ACE_PLUS_FFT_MODEL}
|
42 |
+
# IN_CHANNELS DESCRIPTION: model's input channels. TYPE: int default: 64
|
43 |
+
IN_CHANNELS: 448
|
44 |
+
# OUT_CHANNELS DESCRIPTION: model's input channels. TYPE: int default: 64
|
45 |
+
OUT_CHANNELS: 64
|
46 |
+
# HIDDEN_SIZE DESCRIPTION: model's hidden size. TYPE: int default: 1024
|
47 |
+
HIDDEN_SIZE: 3072
|
48 |
+
REDUX_DIM: 1152
|
49 |
+
# NUM_HEADS DESCRIPTION: number of heads in the transformer. TYPE: int default: 16
|
50 |
+
NUM_HEADS: 24
|
51 |
+
# AXES_DIM DESCRIPTION: dimensions of the axes of the positional encoding. TYPE: list default: [16, 56, 56]
|
52 |
+
AXES_DIM: [ 16, 56, 56 ]
|
53 |
+
# THETA DESCRIPTION: theta for positional encoding. TYPE: int default: 10000
|
54 |
+
THETA: 10000
|
55 |
+
# VEC_IN_DIM DESCRIPTION: dimension of the vector input. TYPE: int default: 768
|
56 |
+
VEC_IN_DIM: 768
|
57 |
+
# GUIDANCE_EMBED DESCRIPTION: whether to use guidance embedding. TYPE: bool default: False
|
58 |
+
GUIDANCE_EMBED: True
|
59 |
+
# CONTEXT_IN_DIM DESCRIPTION: dimension of the context input. TYPE: int default: 4096
|
60 |
+
CONTEXT_IN_DIM: 4096
|
61 |
+
# MLP_RATIO DESCRIPTION: ratio of mlp hidden size to hidden size. TYPE: float default: 4.0
|
62 |
+
MLP_RATIO: 4.0
|
63 |
+
# QKV_BIAS DESCRIPTION: whether to use bias in qkv projection. TYPE: bool default: True
|
64 |
+
QKV_BIAS: True
|
65 |
+
# DEPTH DESCRIPTION: number of transformer blocks. TYPE: int default: 19
|
66 |
+
DEPTH: 19
|
67 |
+
# DEPTH_SINGLE_BLOCKS DESCRIPTION: number of transformer blocks in the single stream block. TYPE: int default: 38
|
68 |
+
DEPTH_SINGLE_BLOCKS: 38
|
69 |
+
ATTN_BACKEND: flash_attn
|
70 |
+
|
71 |
+
#
|
72 |
+
FIRST_STAGE_MODEL:
|
73 |
+
NAME: AutoencoderKLFlux
|
74 |
+
EMBED_DIM: 16
|
75 |
+
PRETRAINED_MODEL: ${FLUX_FILL_PATH}/ae.safetensors
|
76 |
+
IGNORE_KEYS: [ ]
|
77 |
+
BATCH_SIZE: 8
|
78 |
+
USE_CONV: False
|
79 |
+
SCALE_FACTOR: 0.3611
|
80 |
+
SHIFT_FACTOR: 0.1159
|
81 |
+
#
|
82 |
+
ENCODER:
|
83 |
+
NAME: Encoder
|
84 |
+
CH: 128
|
85 |
+
OUT_CH: 3
|
86 |
+
NUM_RES_BLOCKS: 2
|
87 |
+
IN_CHANNELS: 3
|
88 |
+
ATTN_RESOLUTIONS: [ ]
|
89 |
+
CH_MULT: [ 1, 2, 4, 4 ]
|
90 |
+
Z_CHANNELS: 16
|
91 |
+
DOUBLE_Z: True
|
92 |
+
DROPOUT: 0.0
|
93 |
+
RESAMP_WITH_CONV: True
|
94 |
+
#
|
95 |
+
DECODER:
|
96 |
+
NAME: Decoder
|
97 |
+
CH: 128
|
98 |
+
OUT_CH: 3
|
99 |
+
NUM_RES_BLOCKS: 2
|
100 |
+
IN_CHANNELS: 3
|
101 |
+
ATTN_RESOLUTIONS: [ ]
|
102 |
+
CH_MULT: [ 1, 2, 4, 4 ]
|
103 |
+
Z_CHANNELS: 16
|
104 |
+
DROPOUT: 0.0
|
105 |
+
RESAMP_WITH_CONV: True
|
106 |
+
GIVE_PRE_END: False
|
107 |
+
TANH_OUT: False
|
108 |
+
#
|
109 |
+
COND_STAGE_MODEL:
|
110 |
+
# NAME DESCRIPTION: TYPE: default: 'T5PlusClipFluxEmbedder'
|
111 |
+
NAME: T5PlusClipFluxEmbedder
|
112 |
+
# T5_MODEL DESCRIPTION: TYPE: default: ''
|
113 |
+
T5_MODEL:
|
114 |
+
# NAME DESCRIPTION: TYPE: default: 'HFEmbedder'
|
115 |
+
NAME: HFEmbedder
|
116 |
+
# HF_MODEL_CLS DESCRIPTION: huggingface cls in transfomer TYPE: NoneType default: None
|
117 |
+
HF_MODEL_CLS: T5EncoderModel
|
118 |
+
# MODEL_PATH DESCRIPTION: model folder path TYPE: NoneType default: None
|
119 |
+
MODEL_PATH: ${FLUX_FILL_PATH}/text_encoder_2/
|
120 |
+
# HF_TOKENIZER_CLS DESCRIPTION: huggingface cls in transfomer TYPE: NoneType default: None
|
121 |
+
HF_TOKENIZER_CLS: T5Tokenizer
|
122 |
+
# TOKENIZER_PATH DESCRIPTION: tokenizer folder path TYPE: NoneType default: None
|
123 |
+
TOKENIZER_PATH: ${FLUX_FILL_PATH}/tokenizer_2/
|
124 |
+
ADDED_IDENTIFIER: [ '<img>','{image}', '{caption}', '{mask}', '{ref_image}', '{image1}', '{image2}', '{image3}', '{image4}', '{image5}', '{image6}', '{image7}', '{image8}', '{image9}' ]
|
125 |
+
# MAX_LENGTH DESCRIPTION: max length of input TYPE: int default: 77
|
126 |
+
MAX_LENGTH: 512
|
127 |
+
# OUTPUT_KEY DESCRIPTION: output key TYPE: str default: 'last_hidden_state'
|
128 |
+
OUTPUT_KEY: last_hidden_state
|
129 |
+
# D_TYPE DESCRIPTION: dtype TYPE: str default: 'bfloat16'
|
130 |
+
D_TYPE: bfloat16
|
131 |
+
# BATCH_INFER DESCRIPTION: batch infer TYPE: bool default: False
|
132 |
+
BATCH_INFER: False
|
133 |
+
CLEAN: whitespace
|
134 |
+
# CLIP_MODEL DESCRIPTION: TYPE: default: ''
|
135 |
+
CLIP_MODEL:
|
136 |
+
# NAME DESCRIPTION: TYPE: default: 'HFEmbedder'
|
137 |
+
NAME: HFEmbedder
|
138 |
+
# HF_MODEL_CLS DESCRIPTION: huggingface cls in transfomer TYPE: NoneType default: None
|
139 |
+
HF_MODEL_CLS: CLIPTextModel
|
140 |
+
# MODEL_PATH DESCRIPTION: model folder path TYPE: NoneType default: None
|
141 |
+
MODEL_PATH: ${FLUX_FILL_PATH}/text_encoder/
|
142 |
+
# HF_TOKENIZER_CLS DESCRIPTION: huggingface cls in transfomer TYPE: NoneType default: None
|
143 |
+
HF_TOKENIZER_CLS: CLIPTokenizer
|
144 |
+
# TOKENIZER_PATH DESCRIPTION: tokenizer folder path TYPE: NoneType default: None
|
145 |
+
TOKENIZER_PATH: ${FLUX_FILL_PATH}/tokenizer/
|
146 |
+
# MAX_LENGTH DESCRIPTION: max length of input TYPE: int default: 77
|
147 |
+
MAX_LENGTH: 77
|
148 |
+
# OUTPUT_KEY DESCRIPTION: output key TYPE: str default: 'last_hidden_state'
|
149 |
+
OUTPUT_KEY: pooler_output
|
150 |
+
# D_TYPE DESCRIPTION: dtype TYPE: str default: 'bfloat16'
|
151 |
+
D_TYPE: bfloat16
|
152 |
+
# BATCH_INFER DESCRIPTION: batch infer TYPE: bool default: False
|
153 |
+
BATCH_INFER: True
|
154 |
+
CLEAN: whitespace
|
155 |
+
|
156 |
+
PREPROCESSOR:
|
157 |
+
- TYPE: repainting
|
158 |
+
REPAINTING_SCALE: 1.0
|
159 |
+
ANNOTATOR:
|
160 |
+
- TYPE: no_preprocess
|
161 |
+
REPAINTING_SCALE: 0.0
|
162 |
+
ANNOTATOR:
|
163 |
+
- TYPE: mosaic_repainting
|
164 |
+
REPAINTING_SCALE: 0.0
|
165 |
+
ANNOTATOR:
|
166 |
+
NAME: ColorAnnotator
|
167 |
+
RATIO: 64
|
168 |
+
- TYPE: contour_repainting
|
169 |
+
REPAINTING_SCALE: 0.0
|
170 |
+
ANNOTATOR:
|
171 |
+
NAME: InfoDrawContourAnnotator
|
172 |
+
INPUT_NC: 3
|
173 |
+
OUTPUT_NC: 1
|
174 |
+
N_RESIDUAL_BLOCKS: 3
|
175 |
+
SIGMOID: True
|
176 |
+
PRETRAINED_MODEL: "ms://iic/scepter_annotator@annotator/ckpts/informative_drawing_contour_style.pth"
|
177 |
+
- TYPE: depth_repainting
|
178 |
+
REPAINTING_SCALE: 0.0
|
179 |
+
ANNOTATOR:
|
180 |
+
NAME: MidasDetector
|
181 |
+
PRETRAINED_MODEL: "ms://iic/scepter_annotator@annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
182 |
+
- TYPE: recolorizing
|
183 |
+
REPAINTING_SCALE: 0.0
|
184 |
+
ANNOTATOR:
|
185 |
+
NAME: GrayAnnotator
|
186 |
+
|
187 |
+
SAMPLE_ARGS:
|
188 |
+
SAMPLE_STEPS: 28
|
189 |
+
SAMPLER: flow_euler
|
190 |
+
SEED: 42
|
191 |
+
IMAGE_SIZE: [ 1024, 1024 ]
|
192 |
+
GUIDE_SCALE: 50
|
modules/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .flux import FluxMRACEPlus, FluxMRModiACEPlus
|
2 |
+
from .ace_plus_dataset import ACEPlusDataset
|
3 |
+
from .ace_plus_ldm import LatentDiffusionACEPlus
|
4 |
+
from .ace_plus_solver import FormalACEPlusSolver
|
5 |
+
from .embedder import ACEHFEmbedder, T5ACEPlusClipFluxEmbedder
|
6 |
+
from .checkpoint import ACECheckpointHook, ACEBackwardHook
|
modules/ace_plus_dataset.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
import math
|
4 |
+
import re, io
|
5 |
+
import numpy as np
|
6 |
+
import random, torch
|
7 |
+
from PIL import Image
|
8 |
+
import torchvision.transforms as T
|
9 |
+
from collections import defaultdict
|
10 |
+
from scepter.modules.data.dataset.registry import DATASETS
|
11 |
+
from scepter.modules.data.dataset.base_dataset import BaseDataset
|
12 |
+
from scepter.modules.transform.io import pillow_convert
|
13 |
+
from scepter.modules.utils.directory import osp_path
|
14 |
+
from scepter.modules.utils.file_system import FS
|
15 |
+
from torchvision.transforms import InterpolationMode
|
16 |
+
def load_image(prefix, img_path, cvt_type=None):
|
17 |
+
if img_path is None or img_path == '':
|
18 |
+
return None
|
19 |
+
img_path = osp_path(prefix, img_path)
|
20 |
+
with FS.get_object(img_path) as image_bytes:
|
21 |
+
image = Image.open(io.BytesIO(image_bytes))
|
22 |
+
if cvt_type is not None:
|
23 |
+
image = pillow_convert(image, cvt_type)
|
24 |
+
return image
|
25 |
+
def transform_image(image, std = 0.5, mean = 0.5):
|
26 |
+
return (image.permute(2, 0, 1)/255. - mean)/std
|
27 |
+
def transform_mask(mask):
|
28 |
+
return mask.unsqueeze(0)/255.
|
29 |
+
def ensure_src_align_target_h_mode(src_image, size, image_id, interpolation=InterpolationMode.BILINEAR):
|
30 |
+
# padding mode
|
31 |
+
H, W = size
|
32 |
+
ret_image = []
|
33 |
+
for one_id in image_id:
|
34 |
+
edit_image = src_image[one_id]
|
35 |
+
_, eH, eW = edit_image.shape
|
36 |
+
scale = H/eH
|
37 |
+
tH, tW = H, int(eW * scale)
|
38 |
+
ret_image.append(T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image))
|
39 |
+
return ret_image
|
40 |
+
|
41 |
+
def ensure_src_align_target_padding_mode(src_image, size, image_id, size_h = [], interpolation=InterpolationMode.BILINEAR):
|
42 |
+
# padding mode
|
43 |
+
H, W = size
|
44 |
+
|
45 |
+
ret_data = []
|
46 |
+
ret_h = []
|
47 |
+
for idx, one_id in enumerate(image_id):
|
48 |
+
if len(size_h) < 1:
|
49 |
+
rH = random.randint(int(H / 3), int(H))
|
50 |
+
else:
|
51 |
+
rH = size_h[idx]
|
52 |
+
ret_h.append(rH)
|
53 |
+
edit_image = src_image[one_id]
|
54 |
+
_, eH, eW = edit_image.shape
|
55 |
+
scale = rH/eH
|
56 |
+
tH, tW = rH, int(eW * scale)
|
57 |
+
edit_image = T.Resize((tH, tW), interpolation=interpolation, antialias=True)(edit_image)
|
58 |
+
# padding
|
59 |
+
delta_w = 0
|
60 |
+
delta_h = H - tH
|
61 |
+
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
|
62 |
+
ret_data.append(T.Pad(padding, fill=0, padding_mode="constant")(edit_image).float())
|
63 |
+
return ret_data, ret_h
|
64 |
+
|
65 |
+
def ensure_limit_sequence(image, max_seq_len = 4096, d = 16, interpolation=InterpolationMode.BILINEAR):
|
66 |
+
# resize image for max_seq_len, while keep the aspect ratio
|
67 |
+
H, W = image.shape[-2:]
|
68 |
+
scale = min(1.0, math.sqrt(max_seq_len / ((H / d) * (W / d))))
|
69 |
+
rH = int(H * scale) // d * d # ensure divisible by self.d
|
70 |
+
rW = int(W * scale) // d * d
|
71 |
+
# print(f"{H} {W} -> {rH} {rW}")
|
72 |
+
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
|
73 |
+
return image
|
74 |
+
|
75 |
+
@DATASETS.register_class()
|
76 |
+
class ACEPlusDataset(BaseDataset):
|
77 |
+
para_dict = {
|
78 |
+
"DELIMITER": {
|
79 |
+
"value": "#;#",
|
80 |
+
"description": "The delimiter for records of data list."
|
81 |
+
},
|
82 |
+
"FIELDS": {
|
83 |
+
"value": ["data_type", "edit_image", "edit_mask", "ref_image", "target_image", "prompt"],
|
84 |
+
"description": "The fields for every record."
|
85 |
+
},
|
86 |
+
"PATH_PREFIX": {
|
87 |
+
"value": "",
|
88 |
+
"description": "The path prefix for every input image."
|
89 |
+
},
|
90 |
+
"EDIT_TYPE_LIST": {
|
91 |
+
"value": [],
|
92 |
+
"description": "The edit type list to be trained for data list."
|
93 |
+
},
|
94 |
+
"MAX_SEQ_LEN": {
|
95 |
+
"value": 4096,
|
96 |
+
"description": "The max sequence length for input image."
|
97 |
+
},
|
98 |
+
"D": {
|
99 |
+
"value": 16,
|
100 |
+
"description": "Patch size for resized image."
|
101 |
+
}
|
102 |
+
}
|
103 |
+
para_dict.update(BaseDataset.para_dict)
|
104 |
+
def __init__(self, cfg, logger=None):
|
105 |
+
super().__init__(cfg, logger=logger)
|
106 |
+
delimiter = cfg.get("DELIMITER", "#;#")
|
107 |
+
fields = cfg.get("FIELDS", [])
|
108 |
+
prefix = cfg.get("PATH_PREFIX", "")
|
109 |
+
edit_type_list = cfg.get("EDIT_TYPE_LIST", [])
|
110 |
+
self.modify_mode = cfg.get("MODIFY_MODE", True)
|
111 |
+
self.max_seq_len = cfg.get("MAX_SEQ_LEN", 4096)
|
112 |
+
self.repaiting_scale = cfg.get("REPAINTING_SCALE", 0.5)
|
113 |
+
self.d = cfg.get("D", 16)
|
114 |
+
prompt_file = cfg.DATA_LIST
|
115 |
+
self.items = self.read_data_list(delimiter,
|
116 |
+
fields,
|
117 |
+
prefix,
|
118 |
+
edit_type_list,
|
119 |
+
prompt_file)
|
120 |
+
random.shuffle(self.items)
|
121 |
+
use_num = int(cfg.get('USE_NUM', -1))
|
122 |
+
if use_num > 0:
|
123 |
+
self.items = self.items[:use_num]
|
124 |
+
def read_data_list(self, delimiter,
|
125 |
+
fields,
|
126 |
+
prefix,
|
127 |
+
edit_type_list,
|
128 |
+
prompt_file):
|
129 |
+
with FS.get_object(prompt_file) as local_data:
|
130 |
+
rows = local_data.decode('utf-8').strip().split('\n')
|
131 |
+
items = list()
|
132 |
+
dtype_level_num = {}
|
133 |
+
for i, row in enumerate(rows):
|
134 |
+
item = {"prefix": prefix}
|
135 |
+
for key, val in zip(fields, row.split(delimiter)):
|
136 |
+
item[key] = val
|
137 |
+
edit_type = item["data_type"]
|
138 |
+
if len(edit_type_list) > 0:
|
139 |
+
for re_pattern in edit_type_list:
|
140 |
+
if re.match(re_pattern, edit_type):
|
141 |
+
items.append(item)
|
142 |
+
if edit_type not in dtype_level_num:
|
143 |
+
dtype_level_num[edit_type] = 0
|
144 |
+
dtype_level_num[edit_type] += 1
|
145 |
+
break
|
146 |
+
else:
|
147 |
+
items.append(item)
|
148 |
+
if edit_type not in dtype_level_num:
|
149 |
+
dtype_level_num[edit_type] = 0
|
150 |
+
dtype_level_num[edit_type] += 1
|
151 |
+
for edit_type in dtype_level_num:
|
152 |
+
self.logger.info(f"{edit_type} has {dtype_level_num[edit_type]} samples.")
|
153 |
+
return items
|
154 |
+
def __len__(self):
|
155 |
+
return len(self.items)
|
156 |
+
|
157 |
+
def __getitem__(self, index):
|
158 |
+
item = self._get(index)
|
159 |
+
return self.pipeline(item)
|
160 |
+
|
161 |
+
def _get(self, index):
|
162 |
+
# normalize
|
163 |
+
sample_id = index%len(self)
|
164 |
+
index = self.items[index%len(self)]
|
165 |
+
prefix = index.get("prefix", "")
|
166 |
+
edit_image = index.get("edit_image", "")
|
167 |
+
edit_mask = index.get("edit_mask", "")
|
168 |
+
ref_image = index.get("ref_image", "")
|
169 |
+
target_image = index.get("target_image", "")
|
170 |
+
prompt = index.get("prompt", "")
|
171 |
+
|
172 |
+
edit_image = load_image(prefix, edit_image, cvt_type="RGB") if edit_image != "" else None
|
173 |
+
edit_mask = load_image(prefix, edit_mask, cvt_type="L") if edit_mask != "" else None
|
174 |
+
ref_image = load_image(prefix, ref_image, cvt_type="RGB") if ref_image != "" else None
|
175 |
+
target_image = load_image(prefix, target_image, cvt_type="RGB") if target_image != "" else None
|
176 |
+
assert target_image is not None
|
177 |
+
|
178 |
+
edit_id, ref_id, src_image_list, src_mask_list = [], [], [], []
|
179 |
+
# parse editing image
|
180 |
+
if edit_image is None:
|
181 |
+
edit_image = Image.new("RGB", target_image.size, (255, 255, 255))
|
182 |
+
edit_mask = Image.new("L", edit_image.size, 255)
|
183 |
+
elif edit_mask is None:
|
184 |
+
edit_mask = Image.new("L", edit_image.size, 255)
|
185 |
+
src_image_list.append(edit_image)
|
186 |
+
edit_id.append(0)
|
187 |
+
src_mask_list.append(edit_mask)
|
188 |
+
# parse reference image
|
189 |
+
if ref_image is not None:
|
190 |
+
src_image_list.append(ref_image)
|
191 |
+
ref_id.append(1)
|
192 |
+
src_mask_list.append(Image.new("L", ref_image.size, 0))
|
193 |
+
|
194 |
+
image = transform_image(torch.tensor(np.array(target_image).astype(np.float32)))
|
195 |
+
if edit_mask is not None:
|
196 |
+
image_mask = transform_mask(torch.tensor(np.array(edit_mask).astype(np.float32)))
|
197 |
+
else:
|
198 |
+
image_mask = Image.new("L", target_image.size, 255)
|
199 |
+
image_mask = transform_mask(torch.tensor(np.array(image_mask).astype(np.float32)))
|
200 |
+
|
201 |
+
|
202 |
+
src_image_list = [transform_image(torch.tensor(np.array(im).astype(np.float32))) for im in src_image_list]
|
203 |
+
src_mask_list = [transform_mask(torch.tensor(np.array(im).astype(np.float32))) for im in src_mask_list]
|
204 |
+
|
205 |
+
# decide the repainting scale for the editing task
|
206 |
+
if len(ref_id) > 0:
|
207 |
+
repainting_scale = 1.0
|
208 |
+
else:
|
209 |
+
repainting_scale = self.repaiting_scale
|
210 |
+
for e_i in edit_id:
|
211 |
+
src_image_list[e_i] = src_image_list[e_i] * (1 - repainting_scale * src_mask_list[e_i])
|
212 |
+
size = image.shape[1:]
|
213 |
+
ref_image_list, ret_h = ensure_src_align_target_padding_mode(src_image_list, size,
|
214 |
+
image_id=ref_id,
|
215 |
+
interpolation=InterpolationMode.NEAREST_EXACT)
|
216 |
+
ref_mask_list, ret_h = ensure_src_align_target_padding_mode(src_mask_list, size,
|
217 |
+
size_h=ret_h,
|
218 |
+
image_id=ref_id,
|
219 |
+
interpolation=InterpolationMode.NEAREST_EXACT)
|
220 |
+
|
221 |
+
edit_image_list = ensure_src_align_target_h_mode(src_image_list, size,
|
222 |
+
image_id=edit_id,
|
223 |
+
interpolation=InterpolationMode.NEAREST_EXACT)
|
224 |
+
edit_mask_list = ensure_src_align_target_h_mode(src_mask_list, size,
|
225 |
+
image_id=edit_id,
|
226 |
+
interpolation=InterpolationMode.NEAREST_EXACT)
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
src_image_list = [torch.cat(ref_image_list + edit_image_list, dim=-1)]
|
231 |
+
src_mask_list = [torch.cat(ref_mask_list + edit_mask_list, dim=-1)]
|
232 |
+
image = torch.cat(ref_image_list + [image], dim=-1)
|
233 |
+
image_mask = torch.cat(ref_mask_list + [image_mask], dim=-1)
|
234 |
+
|
235 |
+
# limit max sequence length
|
236 |
+
image = ensure_limit_sequence(image, max_seq_len = self.max_seq_len,
|
237 |
+
d = self.d, interpolation=InterpolationMode.BILINEAR)
|
238 |
+
image_mask = ensure_limit_sequence(image_mask, max_seq_len = self.max_seq_len,
|
239 |
+
d = self.d, interpolation=InterpolationMode.NEAREST_EXACT)
|
240 |
+
src_image_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len,
|
241 |
+
d = self.d, interpolation=InterpolationMode.BILINEAR) for i in src_image_list]
|
242 |
+
src_mask_list = [ensure_limit_sequence(i, max_seq_len = self.max_seq_len,
|
243 |
+
d = self.d, interpolation=InterpolationMode.NEAREST_EXACT) for i in src_mask_list]
|
244 |
+
|
245 |
+
if self.modify_mode:
|
246 |
+
# To be modified regions according to mask
|
247 |
+
modify_image_list = [ii * im for ii, im in zip(src_image_list, src_mask_list)]
|
248 |
+
# To be edited regions according to mask
|
249 |
+
src_image_list = [ii * (1 - im) for ii, im in zip(src_image_list, src_mask_list)]
|
250 |
+
else:
|
251 |
+
src_image_list = src_image_list
|
252 |
+
modify_image_list = src_image_list
|
253 |
+
|
254 |
+
item = {
|
255 |
+
"src_image_list": src_image_list,
|
256 |
+
"src_mask_list": src_mask_list,
|
257 |
+
"modify_image_list": modify_image_list,
|
258 |
+
"image": image,
|
259 |
+
"image_mask": image_mask,
|
260 |
+
"edit_id": edit_id,
|
261 |
+
"ref_id": ref_id,
|
262 |
+
"prompt": prompt,
|
263 |
+
"edit_key": index["edit_key"] if "edit_key" in index else "",
|
264 |
+
"sample_id": sample_id
|
265 |
+
}
|
266 |
+
return item
|
267 |
+
|
268 |
+
@staticmethod
|
269 |
+
def collate_fn(batch):
|
270 |
+
collect = defaultdict(list)
|
271 |
+
for sample in batch:
|
272 |
+
for k, v in sample.items():
|
273 |
+
collect[k].append(v)
|
274 |
+
new_batch = dict()
|
275 |
+
for k, v in collect.items():
|
276 |
+
if all([i is None for i in v]):
|
277 |
+
new_batch[k] = None
|
278 |
+
else:
|
279 |
+
new_batch[k] = v
|
280 |
+
return new_batch
|
modules/ace_plus_ldm.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import copy
|
6 |
+
import math
|
7 |
+
import random
|
8 |
+
from contextlib import nullcontext
|
9 |
+
from einops import rearrange
|
10 |
+
from scepter.modules.model.network.ldm import LatentDiffusion
|
11 |
+
from scepter.modules.model.registry import MODELS, DIFFUSIONS, BACKBONES, LOSSES, TOKENIZERS, EMBEDDERS
|
12 |
+
from scepter.modules.model.utils.basic_utils import check_list_of_list, to_device, pack_imagelist_into_tensor, \
|
13 |
+
limit_batch_data, unpack_tensor_into_imagelist, count_params, disabled_train
|
14 |
+
from scepter.modules.utils.config import dict_to_yaml
|
15 |
+
from scepter.modules.utils.distribute import we
|
16 |
+
|
17 |
+
@MODELS.register_class()
|
18 |
+
class LatentDiffusionACEPlus(LatentDiffusion):
|
19 |
+
para_dict = LatentDiffusion.para_dict
|
20 |
+
def __init__(self, cfg, logger=None):
|
21 |
+
super().__init__(cfg, logger=logger)
|
22 |
+
self.guide_scale = cfg.get('GUIDE_SCALE', 1.0)
|
23 |
+
|
24 |
+
def init_params(self):
|
25 |
+
self.parameterization = self.cfg.get('PARAMETERIZATION', 'rf')
|
26 |
+
assert self.parameterization in [
|
27 |
+
'eps', 'x0', 'v', 'rf'
|
28 |
+
], 'currently only supporting "eps" and "x0" and "v" and "rf"'
|
29 |
+
|
30 |
+
diffusion_cfg = self.cfg.get("DIFFUSION", None)
|
31 |
+
assert diffusion_cfg is not None
|
32 |
+
if self.cfg.have("WORK_DIR"):
|
33 |
+
diffusion_cfg.WORK_DIR = self.cfg.WORK_DIR
|
34 |
+
self.diffusion = DIFFUSIONS.build(diffusion_cfg, logger=self.logger)
|
35 |
+
|
36 |
+
self.pretrained_model = self.cfg.get('PRETRAINED_MODEL', None)
|
37 |
+
self.ignore_keys = self.cfg.get('IGNORE_KEYS', [])
|
38 |
+
|
39 |
+
self.model_config = self.cfg.DIFFUSION_MODEL
|
40 |
+
self.first_stage_config = self.cfg.FIRST_STAGE_MODEL
|
41 |
+
self.cond_stage_config = self.cfg.COND_STAGE_MODEL
|
42 |
+
self.tokenizer_config = self.cfg.get('TOKENIZER', None)
|
43 |
+
self.loss_config = self.cfg.get('LOSS', None)
|
44 |
+
|
45 |
+
self.scale_factor = self.cfg.get('SCALE_FACTOR', 0.18215)
|
46 |
+
self.size_factor = self.cfg.get('SIZE_FACTOR', 16)
|
47 |
+
self.default_n_prompt = self.cfg.get('DEFAULT_N_PROMPT', '')
|
48 |
+
self.default_n_prompt = '' if self.default_n_prompt is None else self.default_n_prompt
|
49 |
+
self.p_zero = self.cfg.get('P_ZERO', 0.0)
|
50 |
+
self.train_n_prompt = self.cfg.get('TRAIN_N_PROMPT', '')
|
51 |
+
if self.default_n_prompt is None:
|
52 |
+
self.default_n_prompt = ''
|
53 |
+
if self.train_n_prompt is None:
|
54 |
+
self.train_n_prompt = ''
|
55 |
+
self.use_ema = self.cfg.get('USE_EMA', False)
|
56 |
+
self.model_ema_config = self.cfg.get('DIFFUSION_MODEL_EMA', None)
|
57 |
+
|
58 |
+
def construct_network(self):
|
59 |
+
# embedding_context = torch.device("meta") if self.model_config.get("PRETRAINED_MODEL", None) else nullcontext()
|
60 |
+
# with embedding_context:
|
61 |
+
self.model = BACKBONES.build(self.model_config, logger=self.logger).to(torch.bfloat16)
|
62 |
+
self.logger.info('all parameters:{}'.format(count_params(self.model)))
|
63 |
+
if self.use_ema:
|
64 |
+
if self.model_ema_config:
|
65 |
+
self.model_ema = BACKBONES.build(self.model_ema_config,
|
66 |
+
logger=self.logger)
|
67 |
+
else:
|
68 |
+
self.model_ema = copy.deepcopy(self.model)
|
69 |
+
self.model_ema = self.model_ema.eval()
|
70 |
+
for param in self.model_ema.parameters():
|
71 |
+
param.requires_grad = False
|
72 |
+
if self.loss_config:
|
73 |
+
self.loss = LOSSES.build(self.loss_config, logger=self.logger)
|
74 |
+
if self.tokenizer_config is not None:
|
75 |
+
self.tokenizer = TOKENIZERS.build(self.tokenizer_config,
|
76 |
+
logger=self.logger)
|
77 |
+
if self.first_stage_config:
|
78 |
+
self.first_stage_model = MODELS.build(self.first_stage_config,
|
79 |
+
logger=self.logger)
|
80 |
+
self.first_stage_model = self.first_stage_model.eval()
|
81 |
+
self.first_stage_model.train = disabled_train
|
82 |
+
for param in self.first_stage_model.parameters():
|
83 |
+
param.requires_grad = False
|
84 |
+
else:
|
85 |
+
self.first_stage_model = None
|
86 |
+
if self.tokenizer_config is not None:
|
87 |
+
self.cond_stage_config.KWARGS = {
|
88 |
+
'vocab_size': self.tokenizer.vocab_size
|
89 |
+
}
|
90 |
+
if self.cond_stage_config == '__is_unconditional__':
|
91 |
+
print(
|
92 |
+
f'Training {self.__class__.__name__} as an unconditional model.'
|
93 |
+
)
|
94 |
+
self.cond_stage_model = None
|
95 |
+
else:
|
96 |
+
model = EMBEDDERS.build(self.cond_stage_config, logger=self.logger)
|
97 |
+
self.cond_stage_model = model.eval().requires_grad_(False)
|
98 |
+
self.cond_stage_model.train = disabled_train
|
99 |
+
|
100 |
+
@torch.no_grad()
|
101 |
+
def encode_first_stage(self, x, **kwargs):
|
102 |
+
def run_one_image(u):
|
103 |
+
zu = self.first_stage_model.encode(u)
|
104 |
+
if isinstance(zu, (tuple, list)):
|
105 |
+
zu = zu[0]
|
106 |
+
return zu
|
107 |
+
|
108 |
+
z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x]
|
109 |
+
return z
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def decode_first_stage(self, z):
|
113 |
+
return [self.first_stage_model.decode(zu) for zu in z]
|
114 |
+
def noise_sample(self, num_samples, h, w, seed, dtype=torch.bfloat16):
|
115 |
+
noise = torch.randn(
|
116 |
+
num_samples,
|
117 |
+
16,
|
118 |
+
# allow for packing
|
119 |
+
2 * math.ceil(h / 16),
|
120 |
+
2 * math.ceil(w / 16),
|
121 |
+
device=we.device_id,
|
122 |
+
dtype=dtype,
|
123 |
+
generator=torch.Generator(device=we.device_id).manual_seed(seed),
|
124 |
+
)
|
125 |
+
return noise
|
126 |
+
def resize_func(self, x, size):
|
127 |
+
if x is None: return x
|
128 |
+
return F.interpolate(x.unsqueeze(0), size = size, mode='nearest-exact')
|
129 |
+
def parse_ref_and_edit(self, src_image,
|
130 |
+
modify_image,
|
131 |
+
src_image_mask,
|
132 |
+
text_embedding,
|
133 |
+
#text_mask,
|
134 |
+
edit_id):
|
135 |
+
edit_image = []
|
136 |
+
modi_image = []
|
137 |
+
edit_mask = []
|
138 |
+
ref_image = []
|
139 |
+
ref_mask = []
|
140 |
+
ref_context = []
|
141 |
+
ref_y = []
|
142 |
+
ref_id = []
|
143 |
+
txt = []
|
144 |
+
txt_y = []
|
145 |
+
for sample_id, (one_src,
|
146 |
+
one_modify,
|
147 |
+
one_src_mask,
|
148 |
+
one_text_embedding,
|
149 |
+
one_text_y,
|
150 |
+
# one_text_mask,
|
151 |
+
one_edit_id) in enumerate(zip(src_image,
|
152 |
+
modify_image,
|
153 |
+
src_image_mask,
|
154 |
+
text_embedding["context"],
|
155 |
+
text_embedding["y"],
|
156 |
+
#text_mask,
|
157 |
+
edit_id)
|
158 |
+
):
|
159 |
+
ref_id.append([i for i in range(len(one_src))])
|
160 |
+
if hasattr(self, "ref_cond_stage_model") and self.ref_cond_stage_model:
|
161 |
+
ref_image.append(self.ref_cond_stage_model.encode_list([((i + 1.0) / 2.0 * 255).type(torch.uint8) for i in one_src]))
|
162 |
+
else:
|
163 |
+
ref_image.append(one_src)
|
164 |
+
ref_mask.append(one_src_mask)
|
165 |
+
# process edit image & edit image mask
|
166 |
+
current_edit_image = to_device([one_src[i] for i in one_edit_id], strict=False)
|
167 |
+
current_edit_image = [v.squeeze(0) for v in self.encode_first_stage(current_edit_image)]
|
168 |
+
# process modi image
|
169 |
+
current_modify_image = to_device([one_modify[i] for i in one_edit_id],
|
170 |
+
strict=False)
|
171 |
+
current_modify_image = [
|
172 |
+
v.squeeze(0)
|
173 |
+
for v in self.encode_first_stage(current_modify_image)
|
174 |
+
]
|
175 |
+
current_edit_image_mask = to_device(
|
176 |
+
[one_src_mask[i] for i in one_edit_id], strict=False)
|
177 |
+
current_edit_image_mask = [
|
178 |
+
self.reshape_func(m).squeeze(0)
|
179 |
+
for m in current_edit_image_mask
|
180 |
+
]
|
181 |
+
|
182 |
+
edit_image.append(current_edit_image)
|
183 |
+
modi_image.append(current_modify_image)
|
184 |
+
edit_mask.append(current_edit_image_mask)
|
185 |
+
ref_context.append(one_text_embedding[:len(ref_id[-1])])
|
186 |
+
ref_y.append(one_text_y[:len(ref_id[-1])])
|
187 |
+
if not sum(len(src_) for src_ in src_image) > 0:
|
188 |
+
ref_image = None
|
189 |
+
ref_context = None
|
190 |
+
ref_y = None
|
191 |
+
for sample_id, (one_text_embedding, one_text_y) in enumerate(zip(text_embedding["context"],
|
192 |
+
text_embedding["y"])):
|
193 |
+
txt.append(one_text_embedding[-1].squeeze(0))
|
194 |
+
txt_y.append(one_text_y[-1])
|
195 |
+
return {
|
196 |
+
"edit": edit_image,
|
197 |
+
'modify': modi_image,
|
198 |
+
"edit_mask": edit_mask,
|
199 |
+
"edit_id": edit_id,
|
200 |
+
"ref_context": ref_context,
|
201 |
+
"ref_y": ref_y,
|
202 |
+
"context": txt,
|
203 |
+
"y": txt_y,
|
204 |
+
"ref_x": ref_image,
|
205 |
+
"ref_mask": ref_mask,
|
206 |
+
"ref_id": ref_id
|
207 |
+
}
|
208 |
+
|
209 |
+
|
210 |
+
def reshape_func(self, mask):
|
211 |
+
mask = mask.to(torch.bfloat16)
|
212 |
+
mask = mask.view((-1, mask.shape[-2], mask.shape[-1]))
|
213 |
+
mask = rearrange(
|
214 |
+
mask,
|
215 |
+
"c (h ph) (w pw) -> c (ph pw) h w",
|
216 |
+
ph=8,
|
217 |
+
pw=8,
|
218 |
+
)
|
219 |
+
return mask
|
220 |
+
|
221 |
+
def forward_train(self,
|
222 |
+
src_image_list=[],
|
223 |
+
modify_image_list=[],
|
224 |
+
src_mask_list=[],
|
225 |
+
edit_id=[],
|
226 |
+
image=None,
|
227 |
+
image_mask=None,
|
228 |
+
noise=None,
|
229 |
+
prompt=[],
|
230 |
+
**kwargs):
|
231 |
+
'''
|
232 |
+
Args:
|
233 |
+
src_image: list of list of src_image
|
234 |
+
src_image_mask: list of list of src_image_mask
|
235 |
+
image: target image
|
236 |
+
image_mask: target image mask
|
237 |
+
noise: default is None, generate automaticly
|
238 |
+
ref_prompt: list of list of text
|
239 |
+
prompt: list of text
|
240 |
+
**kwargs:
|
241 |
+
Returns:
|
242 |
+
'''
|
243 |
+
assert check_list_of_list(src_image_list) and check_list_of_list(
|
244 |
+
src_mask_list)
|
245 |
+
assert self.cond_stage_model is not None
|
246 |
+
|
247 |
+
gc_seg = kwargs.pop("gc_seg", [])
|
248 |
+
gc_seg = int(gc_seg[0]) if len(gc_seg) > 0 else 0
|
249 |
+
align = kwargs.pop("align", [])
|
250 |
+
prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
|
251 |
+
if len(align) < 1: align = [0] * len(prompt_)
|
252 |
+
context = getattr(self.cond_stage_model, 'encode_list_of_list')(prompt_)
|
253 |
+
guide_scale = self.guide_scale
|
254 |
+
if guide_scale is not None:
|
255 |
+
guide_scale = torch.full((len(prompt_),), guide_scale, device=we.device_id)
|
256 |
+
else:
|
257 |
+
guide_scale = None
|
258 |
+
# image and image_mask
|
259 |
+
# print("is list of list", check_list_of_list(image))
|
260 |
+
if check_list_of_list(image):
|
261 |
+
image = [to_device(ix) for ix in image]
|
262 |
+
x_start = [self.encode_first_stage(ix, **kwargs) for ix in image]
|
263 |
+
noise = [[torch.randn_like(ii) for ii in ix] for ix in x_start]
|
264 |
+
x_start = [torch.cat(ix, dim=-1) for ix in x_start]
|
265 |
+
noise = [torch.cat(ix, dim=-1) for ix in noise]
|
266 |
+
|
267 |
+
noise, _ = pack_imagelist_into_tensor(noise)
|
268 |
+
|
269 |
+
image_mask = [to_device(im, strict=False) for im in image_mask]
|
270 |
+
x_mask = [[self.reshape_func(i).squeeze(0) for i in im] if im is not None else [None] * len(ix) for ix, im in zip(image, image_mask)]
|
271 |
+
x_mask = [torch.cat(im, dim=-1) for im in x_mask]
|
272 |
+
else:
|
273 |
+
image = to_device(image)
|
274 |
+
x_start = self.encode_first_stage(image, **kwargs)
|
275 |
+
image_mask = to_device(image_mask, strict=False)
|
276 |
+
x_mask = [self.reshape_func(i).squeeze(0) for i in image_mask] if image_mask is not None else [None] * len(
|
277 |
+
image)
|
278 |
+
loss_mask, _ = pack_imagelist_into_tensor(
|
279 |
+
tuple(torch.ones_like(ix, dtype=torch.bool, device=ix.device) for ix in x_start))
|
280 |
+
x_start, x_shapes = pack_imagelist_into_tensor(x_start)
|
281 |
+
context['x_shapes'] = x_shapes
|
282 |
+
context['align'] = align
|
283 |
+
# process image mask
|
284 |
+
|
285 |
+
context['x_mask'] = x_mask
|
286 |
+
ref_edit_context = self.parse_ref_and_edit(src_image_list, modify_image_list, src_mask_list, context, edit_id)
|
287 |
+
context.update(ref_edit_context)
|
288 |
+
|
289 |
+
teacher_context = copy.deepcopy(context)
|
290 |
+
teacher_context["context"] = torch.cat(teacher_context["context"], dim=0)
|
291 |
+
teacher_context["y"] = torch.cat(teacher_context["y"], dim=0)
|
292 |
+
loss = self.diffusion.loss(x_0=x_start,
|
293 |
+
model=self.model,
|
294 |
+
model_kwargs={"cond": context,
|
295 |
+
"gc_seg": gc_seg,
|
296 |
+
"guidance": guide_scale},
|
297 |
+
noise=noise,
|
298 |
+
reduction='none',
|
299 |
+
**kwargs)
|
300 |
+
loss = loss[loss_mask].mean()
|
301 |
+
ret = {'loss': loss, 'probe_data': {'prompt': prompt}}
|
302 |
+
return ret
|
303 |
+
|
304 |
+
@torch.no_grad()
|
305 |
+
def forward_test(self,
|
306 |
+
src_image_list=[],
|
307 |
+
modify_image_list=[],
|
308 |
+
src_mask_list=[],
|
309 |
+
edit_id=[],
|
310 |
+
image=None,
|
311 |
+
image_mask=None,
|
312 |
+
prompt=[],
|
313 |
+
sampler='flow_euler',
|
314 |
+
sample_steps=20,
|
315 |
+
seed=2023,
|
316 |
+
guide_scale=3.5,
|
317 |
+
guide_rescale=0.0,
|
318 |
+
show_process=False,
|
319 |
+
log_num=-1,
|
320 |
+
**kwargs):
|
321 |
+
outputs = self.forward_editing(
|
322 |
+
src_image_list=src_image_list,
|
323 |
+
src_mask_list=src_mask_list,
|
324 |
+
modify_image_list=modify_image_list,
|
325 |
+
edit_id=edit_id,
|
326 |
+
image=image,
|
327 |
+
image_mask=image_mask,
|
328 |
+
prompt=prompt,
|
329 |
+
sampler=sampler,
|
330 |
+
sample_steps=sample_steps,
|
331 |
+
seed=seed,
|
332 |
+
guide_scale=guide_scale,
|
333 |
+
guide_rescale=guide_rescale,
|
334 |
+
show_process=show_process,
|
335 |
+
log_num=log_num,
|
336 |
+
**kwargs
|
337 |
+
)
|
338 |
+
return outputs
|
339 |
+
|
340 |
+
@torch.no_grad()
|
341 |
+
def forward_editing(self,
|
342 |
+
src_image_list=[],
|
343 |
+
modify_image_list=None,
|
344 |
+
src_mask_list=[],
|
345 |
+
edit_id=[],
|
346 |
+
image=None,
|
347 |
+
image_mask=None,
|
348 |
+
prompt=[],
|
349 |
+
sampler='flow_euler',
|
350 |
+
sample_steps=20,
|
351 |
+
seed=2023,
|
352 |
+
guide_scale=3.5,
|
353 |
+
log_num=-1,
|
354 |
+
**kwargs
|
355 |
+
):
|
356 |
+
# gc_seg is unused
|
357 |
+
prompt, image, image_mask, src_image, modify_image, src_image_mask, edit_id = limit_batch_data(
|
358 |
+
[prompt, image, image_mask, src_image_list, modify_image_list, src_mask_list, edit_id], log_num)
|
359 |
+
assert check_list_of_list(src_image) and check_list_of_list(src_image_mask)
|
360 |
+
assert self.cond_stage_model is not None
|
361 |
+
align = kwargs.pop("align", [])
|
362 |
+
prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
|
363 |
+
if len(align) < 1: align = [0] * len(prompt_)
|
364 |
+
context = getattr(self.cond_stage_model, 'encode_list_of_list')(prompt_)
|
365 |
+
guide_scale = guide_scale or self.guide_scale
|
366 |
+
if guide_scale is not None:
|
367 |
+
guide_scale = torch.full((len(prompt),), guide_scale, device=we.device_id)
|
368 |
+
else:
|
369 |
+
guide_scale = None
|
370 |
+
# image and image_mask
|
371 |
+
seed = seed if seed >= 0 else random.randint(0, 2 ** 32 - 1)
|
372 |
+
if image is not None:
|
373 |
+
if check_list_of_list(image):
|
374 |
+
image = [torch.cat(ix, dim=-1) for ix in image]
|
375 |
+
image_mask = [torch.cat(im, dim=-1) for im in image_mask]
|
376 |
+
noise = [self.noise_sample(1, ix.shape[1], ix.shape[2], seed) for ix in image]
|
377 |
+
else:
|
378 |
+
height, width = kwargs.pop("height"), kwargs.pop("width")
|
379 |
+
noise = [self.noise_sample(1, height, width, seed) for _ in prompt]
|
380 |
+
noise, x_shapes = pack_imagelist_into_tensor(noise)
|
381 |
+
context['x_shapes'] = x_shapes
|
382 |
+
context['align'] = align
|
383 |
+
# process image mask
|
384 |
+
image_mask = to_device(image_mask, strict=False)
|
385 |
+
x_mask = [self.reshape_func(i).squeeze(0) for i in image_mask]
|
386 |
+
context['x_mask'] = x_mask
|
387 |
+
ref_edit_context = self.parse_ref_and_edit(src_image, modify_image, src_image_mask, context, edit_id)
|
388 |
+
context.update(ref_edit_context)
|
389 |
+
# UNet use input n_prompt
|
390 |
+
# model = self.model_ema if self.use_ema and self.eval_ema else self.model
|
391 |
+
# import pdb;pdb.set_trace()
|
392 |
+
model = self.model
|
393 |
+
embedding_context = model.no_sync if isinstance(model, torch.distributed.fsdp.FullyShardedDataParallel) \
|
394 |
+
else nullcontext
|
395 |
+
with embedding_context():
|
396 |
+
samples = self.diffusion.sample(
|
397 |
+
noise=noise,
|
398 |
+
sampler=sampler,
|
399 |
+
model=self.model,
|
400 |
+
model_kwargs={"cond": context, "guidance": guide_scale, "gc_seg": -1
|
401 |
+
},
|
402 |
+
steps=sample_steps,
|
403 |
+
show_progress=True,
|
404 |
+
guide_scale=guide_scale,
|
405 |
+
return_intermediate=None,
|
406 |
+
**kwargs).float()
|
407 |
+
samples = unpack_tensor_into_imagelist(samples, x_shapes)
|
408 |
+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
409 |
+
x_samples = self.decode_first_stage(samples)
|
410 |
+
outputs = list()
|
411 |
+
for i in range(len(prompt)):
|
412 |
+
rec_img = torch.clamp((x_samples[i].float() + 1.0) / 2.0, min=0.0, max=1.0)
|
413 |
+
rec_img = rec_img.squeeze(0)
|
414 |
+
edit_imgs, modify_imgs, edit_img_masks = [], [], []
|
415 |
+
if src_image is not None and src_image[i] is not None:
|
416 |
+
if src_image_mask[i] is None:
|
417 |
+
src_image_mask[i] = [None] * len(src_image[i])
|
418 |
+
for edit_img, modify_img, edit_mask in zip(src_image[i], modify_image_list[i], src_image_mask[i]):
|
419 |
+
edit_img = torch.clamp((edit_img.float() + 1.0) / 2.0, min=0.0, max=1.0)
|
420 |
+
edit_imgs.append(edit_img.squeeze(0))
|
421 |
+
modify_img = torch.clamp((modify_img.float() + 1.0) / 2.0,
|
422 |
+
min=0.0,
|
423 |
+
max=1.0)
|
424 |
+
modify_imgs.append(modify_img.squeeze(0))
|
425 |
+
if edit_mask is None:
|
426 |
+
edit_mask = torch.ones_like(edit_img[[0], :, :])
|
427 |
+
edit_img_masks.append(edit_mask)
|
428 |
+
one_tup = {
|
429 |
+
'reconstruct_image': rec_img,
|
430 |
+
'instruction': prompt[i],
|
431 |
+
'edit_image': edit_imgs if len(edit_imgs) > 0 else None,
|
432 |
+
'modify_image': modify_imgs if len(modify_imgs) > 0 else None,
|
433 |
+
'edit_mask': edit_img_masks if len(edit_imgs) > 0 else None
|
434 |
+
}
|
435 |
+
if image is not None:
|
436 |
+
if image_mask is None:
|
437 |
+
image_mask = [None] * len(image)
|
438 |
+
ori_img = torch.clamp((image[i] + 1.0) / 2.0, min=0.0, max=1.0)
|
439 |
+
one_tup['target_image'] = ori_img.squeeze(0)
|
440 |
+
one_tup['target_mask'] = image_mask[i] if image_mask[i] is not None else torch.ones_like(
|
441 |
+
ori_img[[0], :, :])
|
442 |
+
outputs.append(one_tup)
|
443 |
+
return outputs
|
444 |
+
|
445 |
+
@staticmethod
|
446 |
+
def get_config_template():
|
447 |
+
return dict_to_yaml('MODEL',
|
448 |
+
__class__.__name__,
|
449 |
+
LatentDiffusionACEPlus.para_dict,
|
450 |
+
set_name=True)
|
451 |
+
|
modules/ace_plus_solver.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from scepter.modules.solver import LatentDiffusionSolver
|
6 |
+
from scepter.modules.solver.registry import SOLVERS
|
7 |
+
from scepter.modules.utils.data import transfer_data_to_cuda
|
8 |
+
from scepter.modules.utils.distribute import we
|
9 |
+
from scepter.modules.utils.probe import ProbeData
|
10 |
+
from tqdm import tqdm
|
11 |
+
@SOLVERS.register_class()
|
12 |
+
class FormalACEPlusSolver(LatentDiffusionSolver):
|
13 |
+
def __init__(self, cfg, logger=None):
|
14 |
+
super().__init__(cfg, logger=logger)
|
15 |
+
self.probe_prompt = cfg.get("PROBE_PROMPT", None)
|
16 |
+
self.probe_hw = cfg.get("PROBE_HW", [])
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def run_eval(self):
|
20 |
+
self.eval_mode()
|
21 |
+
self.before_all_iter(self.hooks_dict[self._mode])
|
22 |
+
all_results = []
|
23 |
+
for batch_idx, batch_data in tqdm(
|
24 |
+
enumerate(self.datas[self._mode].dataloader)):
|
25 |
+
self.before_iter(self.hooks_dict[self._mode])
|
26 |
+
if self.sample_args:
|
27 |
+
batch_data.update(self.sample_args.get_lowercase_dict())
|
28 |
+
with torch.autocast(device_type='cuda',
|
29 |
+
enabled=self.use_amp,
|
30 |
+
dtype=self.dtype):
|
31 |
+
results = self.run_step_eval(transfer_data_to_cuda(batch_data),
|
32 |
+
batch_idx,
|
33 |
+
step=self.total_iter,
|
34 |
+
rank=we.rank)
|
35 |
+
all_results.extend(results)
|
36 |
+
self.after_iter(self.hooks_dict[self._mode])
|
37 |
+
log_data, log_label = self.save_results(all_results)
|
38 |
+
self.register_probe({'eval_label': log_label})
|
39 |
+
self.register_probe({
|
40 |
+
'eval_image':
|
41 |
+
ProbeData(log_data,
|
42 |
+
is_image=True,
|
43 |
+
build_html=True,
|
44 |
+
build_label=log_label)
|
45 |
+
})
|
46 |
+
self.after_all_iter(self.hooks_dict[self._mode])
|
47 |
+
|
48 |
+
@torch.no_grad()
|
49 |
+
def run_test(self):
|
50 |
+
self.test_mode()
|
51 |
+
self.before_all_iter(self.hooks_dict[self._mode])
|
52 |
+
all_results = []
|
53 |
+
for batch_idx, batch_data in tqdm(
|
54 |
+
enumerate(self.datas[self._mode].dataloader)):
|
55 |
+
self.before_iter(self.hooks_dict[self._mode])
|
56 |
+
if self.sample_args:
|
57 |
+
batch_data.update(self.sample_args.get_lowercase_dict())
|
58 |
+
with torch.autocast(device_type='cuda',
|
59 |
+
enabled=self.use_amp,
|
60 |
+
dtype=self.dtype):
|
61 |
+
results = self.run_step_eval(transfer_data_to_cuda(batch_data),
|
62 |
+
batch_idx,
|
63 |
+
step=self.total_iter,
|
64 |
+
rank=we.rank)
|
65 |
+
all_results.extend(results)
|
66 |
+
self.after_iter(self.hooks_dict[self._mode])
|
67 |
+
log_data, log_label = self.save_results(all_results)
|
68 |
+
self.register_probe({'test_label': log_label})
|
69 |
+
self.register_probe({
|
70 |
+
'test_image':
|
71 |
+
ProbeData(log_data,
|
72 |
+
is_image=True,
|
73 |
+
build_html=True,
|
74 |
+
build_label=log_label)
|
75 |
+
})
|
76 |
+
|
77 |
+
self.after_all_iter(self.hooks_dict[self._mode])
|
78 |
+
|
79 |
+
def run_step_val(self, batch_data, batch_idx=0, step=None, rank=None):
|
80 |
+
sample_id_list = batch_data['sample_id']
|
81 |
+
loss_dict = {}
|
82 |
+
with torch.autocast(device_type='cuda',
|
83 |
+
enabled=self.use_amp,
|
84 |
+
dtype=self.dtype):
|
85 |
+
results = self.model.forward_train(**batch_data)
|
86 |
+
loss = results['loss']
|
87 |
+
for sample_id in sample_id_list:
|
88 |
+
loss_dict[sample_id] = loss.detach().cpu().numpy()
|
89 |
+
return loss_dict
|
90 |
+
|
91 |
+
def save_results(self, results):
|
92 |
+
log_data, log_label = [], []
|
93 |
+
for result in results:
|
94 |
+
ret_images, ret_labels = [], []
|
95 |
+
edit_image = result.get('edit_image', None)
|
96 |
+
modify_image = result.get('modify_image', None)
|
97 |
+
edit_mask = result.get('edit_mask', None)
|
98 |
+
if edit_image is not None:
|
99 |
+
for i, edit_img in enumerate(result['edit_image']):
|
100 |
+
if edit_img is None:
|
101 |
+
continue
|
102 |
+
ret_images.append((edit_img.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
|
103 |
+
ret_labels.append(f'edit_image{i}; ')
|
104 |
+
ret_images.append((modify_image[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
|
105 |
+
ret_labels.append(f'modify_image{i}; ')
|
106 |
+
if edit_mask is not None:
|
107 |
+
ret_images.append((edit_mask[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
|
108 |
+
ret_labels.append(f'edit_mask{i}; ')
|
109 |
+
|
110 |
+
target_image = result.get('target_image', None)
|
111 |
+
target_mask = result.get('target_mask', None)
|
112 |
+
if target_image is not None:
|
113 |
+
ret_images.append((target_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
|
114 |
+
ret_labels.append(f'target_image; ')
|
115 |
+
if target_mask is not None:
|
116 |
+
ret_images.append((target_mask.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
|
117 |
+
ret_labels.append(f'target_mask; ')
|
118 |
+
teacher_image = result.get('image', None)
|
119 |
+
if teacher_image is not None:
|
120 |
+
ret_images.append((teacher_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
|
121 |
+
ret_labels.append(f"teacher_image")
|
122 |
+
reconstruct_image = result.get('reconstruct_image', None)
|
123 |
+
if reconstruct_image is not None:
|
124 |
+
ret_images.append((reconstruct_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
|
125 |
+
ret_labels.append(f"{result['instruction']}")
|
126 |
+
log_data.append(ret_images)
|
127 |
+
log_label.append(ret_labels)
|
128 |
+
return log_data, log_label
|
129 |
+
@property
|
130 |
+
def probe_data(self):
|
131 |
+
if not we.debug and self.mode == 'train':
|
132 |
+
batch_data = transfer_data_to_cuda(self.current_batch_data[self.mode])
|
133 |
+
self.eval_mode()
|
134 |
+
with torch.autocast(device_type='cuda',
|
135 |
+
enabled=self.use_amp,
|
136 |
+
dtype=self.dtype):
|
137 |
+
batch_data['log_num'] = self.log_train_num
|
138 |
+
batch_data.update(self.sample_args.get_lowercase_dict())
|
139 |
+
results = self.run_step_eval(batch_data)
|
140 |
+
self.train_mode()
|
141 |
+
log_data, log_label = self.save_results(results)
|
142 |
+
self.register_probe({
|
143 |
+
'train_image':
|
144 |
+
ProbeData(log_data,
|
145 |
+
is_image=True,
|
146 |
+
build_html=True,
|
147 |
+
build_label=log_label)
|
148 |
+
})
|
149 |
+
self.register_probe({'train_label': log_label})
|
150 |
+
if self.probe_prompt:
|
151 |
+
self.eval_mode()
|
152 |
+
all_results = []
|
153 |
+
for prompt in self.probe_prompt:
|
154 |
+
with torch.autocast(device_type='cuda',
|
155 |
+
enabled=self.use_amp,
|
156 |
+
dtype=self.dtype):
|
157 |
+
batch_data = {
|
158 |
+
"prompt": [[prompt]],
|
159 |
+
"image": [torch.zeros(3, self.probe_hw[0], self.probe_hw[1])],
|
160 |
+
"image_mask": [torch.ones(1, self.probe_hw[0], self.probe_hw[1])],
|
161 |
+
"src_image_list": [[]],
|
162 |
+
"modify_image_list": [[]],
|
163 |
+
"src_mask_list": [[]],
|
164 |
+
"edit_id": [[]],
|
165 |
+
"height": self.probe_hw[0],
|
166 |
+
"width": self.probe_hw[1]
|
167 |
+
}
|
168 |
+
batch_data.update(self.sample_args.get_lowercase_dict())
|
169 |
+
results = self.run_step_eval(batch_data)
|
170 |
+
all_results.extend(results)
|
171 |
+
self.train_mode()
|
172 |
+
log_data, log_label = self.save_results(all_results)
|
173 |
+
self.register_probe({
|
174 |
+
'probe_image':
|
175 |
+
ProbeData(log_data,
|
176 |
+
is_image=True,
|
177 |
+
build_html=True,
|
178 |
+
build_label=log_label)
|
179 |
+
})
|
180 |
+
|
181 |
+
return super(LatentDiffusionSolver, self).probe_data
|
modules/checkpoint.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
import os, torch
|
4 |
+
import os.path as osp
|
5 |
+
import warnings
|
6 |
+
from collections import OrderedDict
|
7 |
+
from safetensors.torch import save_file
|
8 |
+
from scepter.modules.solver.hooks import CheckpointHook, BackwardHook
|
9 |
+
from scepter.modules.solver.hooks.registry import HOOKS
|
10 |
+
from scepter.modules.utils.config import dict_to_yaml
|
11 |
+
from scepter.modules.utils.distribute import we
|
12 |
+
from scepter.modules.utils.file_system import FS
|
13 |
+
|
14 |
+
_DEFAULT_CHECKPOINT_PRIORITY = 300
|
15 |
+
|
16 |
+
def convert_to_comfyui_lora(ori_sd, prefix = "lora_unet"):
|
17 |
+
new_ckpt = OrderedDict()
|
18 |
+
for k,v in ori_sd.items():
|
19 |
+
new_k = k.replace(".lora_A.0_SwiftLoRA.", ".lora_down.").replace(".lora_B.0_SwiftLoRA.", ".lora_up.")
|
20 |
+
new_k = prefix + "_" + new_k.split(".lora")[0].replace("model.", "").replace(".", "_") + ".lora" + new_k.split(".lora")[1]
|
21 |
+
alpha_k = new_k.split(".lora")[0] + ".alpha"
|
22 |
+
new_ckpt[new_k] = v
|
23 |
+
if "lora_up" in new_k:
|
24 |
+
alpha = v.shape[-1]
|
25 |
+
elif "lora_down" in new_k:
|
26 |
+
alpha = v.shape[0]
|
27 |
+
new_ckpt[alpha_k] = torch.tensor(float(alpha)).to(v)
|
28 |
+
return new_ckpt
|
29 |
+
|
30 |
+
@HOOKS.register_class()
|
31 |
+
class ACECheckpointHook(CheckpointHook):
|
32 |
+
""" Checkpoint resume or save hook.
|
33 |
+
Args:
|
34 |
+
interval (int): Save interval, by epoch.
|
35 |
+
save_best (bool): Save the best checkpoint by a metric key, default is False.
|
36 |
+
save_best_by (str): How to get the best the checkpoint by the metric key, default is ''.
|
37 |
+
+ means the higher the best (default).
|
38 |
+
- means the lower the best.
|
39 |
+
E.g. +acc@1, -err@1, acc@5(same as +acc@5)
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, cfg, logger=None):
|
43 |
+
super(ACECheckpointHook, self).__init__(cfg, logger=logger)
|
44 |
+
|
45 |
+
def after_iter(self, solver):
|
46 |
+
super().after_iter(solver)
|
47 |
+
if solver.total_iter != 0 and (
|
48 |
+
(solver.total_iter + 1) % self.interval == 0
|
49 |
+
or solver.total_iter == solver.max_steps - 1):
|
50 |
+
from swift import SwiftModel
|
51 |
+
if isinstance(solver.model, SwiftModel) or (
|
52 |
+
hasattr(solver.model, 'module')
|
53 |
+
and isinstance(solver.model.module, SwiftModel)):
|
54 |
+
save_path = osp.join(
|
55 |
+
solver.work_dir,
|
56 |
+
'checkpoints/{}-{}'.format(self.save_name_prefix,
|
57 |
+
solver.total_iter + 1))
|
58 |
+
if we.rank == 0:
|
59 |
+
tuner_model = os.path.join(save_path, '0_SwiftLoRA', 'adapter_model.bin')
|
60 |
+
save_model = os.path.join(save_path, '0_SwiftLoRA', 'comfyui_model.safetensors')
|
61 |
+
if FS.exists(tuner_model):
|
62 |
+
with FS.get_from(tuner_model) as local_file:
|
63 |
+
swift_lora_sd = torch.load(local_file, weights_only=True)
|
64 |
+
safetensor_lora_sd = convert_to_comfyui_lora(swift_lora_sd)
|
65 |
+
with FS.put_to(save_model) as local_file:
|
66 |
+
save_file(safetensor_lora_sd, local_file)
|
67 |
+
@staticmethod
|
68 |
+
def get_config_template():
|
69 |
+
return dict_to_yaml('hook',
|
70 |
+
__class__.__name__,
|
71 |
+
ACECheckpointHook.para_dict,
|
72 |
+
set_name=True)
|
73 |
+
|
74 |
+
@HOOKS.register_class()
|
75 |
+
class ACEBackwardHook(BackwardHook):
|
76 |
+
def grad_clip(self, optimizer):
|
77 |
+
for params_group in optimizer.param_groups:
|
78 |
+
train_params = []
|
79 |
+
for param in params_group['params']:
|
80 |
+
if param.requires_grad:
|
81 |
+
train_params.append(param)
|
82 |
+
# print(len(train_params), self.gradient_clip)
|
83 |
+
torch.nn.utils.clip_grad_norm_(parameters=train_params,
|
84 |
+
max_norm=self.gradient_clip)
|
85 |
+
|
86 |
+
def after_iter(self, solver):
|
87 |
+
if solver.optimizer is not None and solver.is_train_mode:
|
88 |
+
if solver.loss is None:
|
89 |
+
warnings.warn(
|
90 |
+
'solver.loss should not be None in train mode, remember to call solver._reduce_scalar()!'
|
91 |
+
)
|
92 |
+
return
|
93 |
+
if solver.scaler is not None:
|
94 |
+
solver.scaler.scale(solver.loss /
|
95 |
+
self.accumulate_step).backward()
|
96 |
+
self.current_step += 1
|
97 |
+
# Suppose profiler run after backward, so we need to set backward_prev_step
|
98 |
+
# as the previous one step before the backward step
|
99 |
+
if self.current_step % self.accumulate_step == 0:
|
100 |
+
solver.scaler.unscale_(solver.optimizer)
|
101 |
+
if self.gradient_clip > 0:
|
102 |
+
self.grad_clip(solver.optimizer)
|
103 |
+
self.profile(solver)
|
104 |
+
solver.scaler.step(solver.optimizer)
|
105 |
+
solver.scaler.update()
|
106 |
+
solver.optimizer.zero_grad()
|
107 |
+
else:
|
108 |
+
(solver.loss / self.accumulate_step).backward()
|
109 |
+
self.current_step += 1
|
110 |
+
# Suppose profiler run after backward, so we need to set backward_prev_step
|
111 |
+
# as the previous one step before the backward step
|
112 |
+
if self.current_step % self.accumulate_step == 0:
|
113 |
+
if self.gradient_clip > 0:
|
114 |
+
self.grad_clip(solver.optimizer)
|
115 |
+
self.profile(solver)
|
116 |
+
solver.optimizer.step()
|
117 |
+
solver.optimizer.zero_grad()
|
118 |
+
if solver.lr_scheduler:
|
119 |
+
if self.current_step % self.accumulate_step == 0:
|
120 |
+
solver.lr_scheduler.step()
|
121 |
+
if self.current_step % self.accumulate_step == 0:
|
122 |
+
setattr(solver, 'backward_step', True)
|
123 |
+
self.current_step = 0
|
124 |
+
else:
|
125 |
+
setattr(solver, 'backward_step', False)
|
126 |
+
solver.loss = None
|
127 |
+
if self.empty_cache_step > 0 and solver.total_iter % self.empty_cache_step == 0:
|
128 |
+
torch.cuda.empty_cache()
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def get_config_template():
|
132 |
+
return dict_to_yaml('hook',
|
133 |
+
__class__.__name__,
|
134 |
+
ACEBackwardHook.para_dict,
|
135 |
+
set_name=True)
|
modules/embedder.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
# This file contains code that is adapted from
|
4 |
+
# https://github.com/black-forest-labs/flux.git
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.utils.dlpack
|
9 |
+
import transformers
|
10 |
+
from scepter.modules.model.embedder.base_embedder import BaseEmbedder
|
11 |
+
from scepter.modules.model.registry import EMBEDDERS
|
12 |
+
from scepter.modules.model.tokenizer.tokenizer_component import (
|
13 |
+
basic_clean, canonicalize, whitespace_clean)
|
14 |
+
from scepter.modules.utils.config import dict_to_yaml
|
15 |
+
from scepter.modules.utils.file_system import FS
|
16 |
+
|
17 |
+
try:
|
18 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
19 |
+
except Exception as e:
|
20 |
+
warnings.warn(
|
21 |
+
f'Import transformers error, please deal with this problem: {e}')
|
22 |
+
|
23 |
+
@EMBEDDERS.register_class()
|
24 |
+
class ACEHFEmbedder(BaseEmbedder):
|
25 |
+
para_dict = {
|
26 |
+
"HF_MODEL_CLS": {
|
27 |
+
"value": None,
|
28 |
+
"description": "huggingface cls in transfomer"
|
29 |
+
},
|
30 |
+
"MODEL_PATH": {
|
31 |
+
"value": None,
|
32 |
+
"description": "model folder path"
|
33 |
+
},
|
34 |
+
"HF_TOKENIZER_CLS": {
|
35 |
+
"value": None,
|
36 |
+
"description": "huggingface cls in transfomer"
|
37 |
+
},
|
38 |
+
|
39 |
+
"TOKENIZER_PATH": {
|
40 |
+
"value": None,
|
41 |
+
"description": "tokenizer folder path"
|
42 |
+
},
|
43 |
+
"MAX_LENGTH": {
|
44 |
+
"value": 77,
|
45 |
+
"description": "max length of input"
|
46 |
+
},
|
47 |
+
"OUTPUT_KEY": {
|
48 |
+
"value": "last_hidden_state",
|
49 |
+
"description": "output key"
|
50 |
+
},
|
51 |
+
"D_TYPE": {
|
52 |
+
"value": "float",
|
53 |
+
"description": "dtype"
|
54 |
+
},
|
55 |
+
"BATCH_INFER": {
|
56 |
+
"value": False,
|
57 |
+
"description": "batch infer"
|
58 |
+
}
|
59 |
+
}
|
60 |
+
para_dict.update(BaseEmbedder.para_dict)
|
61 |
+
def __init__(self, cfg, logger=None):
|
62 |
+
super().__init__(cfg, logger=logger)
|
63 |
+
hf_model_cls = cfg.get('HF_MODEL_CLS', None)
|
64 |
+
model_path = cfg.get("MODEL_PATH", None)
|
65 |
+
hf_tokenizer_cls = cfg.get('HF_TOKENIZER_CLS', None)
|
66 |
+
tokenizer_path = cfg.get('TOKENIZER_PATH', None)
|
67 |
+
self.max_length = cfg.get('MAX_LENGTH', 77)
|
68 |
+
self.output_key = cfg.get("OUTPUT_KEY", "last_hidden_state")
|
69 |
+
self.d_type = cfg.get("D_TYPE", "float")
|
70 |
+
self.clean = cfg.get("CLEAN", "whitespace")
|
71 |
+
self.batch_infer = cfg.get("BATCH_INFER", False)
|
72 |
+
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None)
|
73 |
+
torch_dtype = getattr(torch, self.d_type)
|
74 |
+
|
75 |
+
assert hf_model_cls is not None and hf_tokenizer_cls is not None
|
76 |
+
assert model_path is not None and tokenizer_path is not None
|
77 |
+
with FS.get_dir_to_local_dir(tokenizer_path, wait_finish=True) as local_path:
|
78 |
+
self.tokenizer = getattr(transformers, hf_tokenizer_cls).from_pretrained(local_path,
|
79 |
+
max_length = self.max_length,
|
80 |
+
torch_dtype = torch_dtype,
|
81 |
+
additional_special_tokens=self.added_identifier)
|
82 |
+
|
83 |
+
with FS.get_dir_to_local_dir(model_path, wait_finish=True) as local_path:
|
84 |
+
self.hf_module = getattr(transformers, hf_model_cls).from_pretrained(local_path, torch_dtype = torch_dtype)
|
85 |
+
|
86 |
+
|
87 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
88 |
+
|
89 |
+
def forward(self, text: list[str], return_mask = False):
|
90 |
+
batch_encoding = self.tokenizer(
|
91 |
+
text,
|
92 |
+
truncation=True,
|
93 |
+
max_length=self.max_length,
|
94 |
+
return_length=False,
|
95 |
+
return_overflowing_tokens=False,
|
96 |
+
padding="max_length",
|
97 |
+
return_tensors="pt",
|
98 |
+
)
|
99 |
+
|
100 |
+
outputs = self.hf_module(
|
101 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
102 |
+
attention_mask=None,
|
103 |
+
output_hidden_states=False,
|
104 |
+
)
|
105 |
+
if return_mask:
|
106 |
+
return outputs[self.output_key], batch_encoding['attention_mask'].to(self.hf_module.device)
|
107 |
+
else:
|
108 |
+
return outputs[self.output_key], None
|
109 |
+
|
110 |
+
def encode(self, text, return_mask = False):
|
111 |
+
if isinstance(text, str):
|
112 |
+
text = [text]
|
113 |
+
if self.clean:
|
114 |
+
text = [self._clean(u) for u in text]
|
115 |
+
if not self.batch_infer:
|
116 |
+
cont, mask = [], []
|
117 |
+
for tt in text:
|
118 |
+
one_cont, one_mask = self([tt], return_mask=return_mask)
|
119 |
+
cont.append(one_cont)
|
120 |
+
mask.append(one_mask)
|
121 |
+
if return_mask:
|
122 |
+
return torch.cat(cont, dim=0), torch.cat(mask, dim=0)
|
123 |
+
else:
|
124 |
+
return torch.cat(cont, dim=0)
|
125 |
+
else:
|
126 |
+
ret_data = self(text, return_mask = return_mask)
|
127 |
+
if return_mask:
|
128 |
+
return ret_data
|
129 |
+
else:
|
130 |
+
return ret_data[0]
|
131 |
+
|
132 |
+
def encode_list(self, text_list, return_mask=True):
|
133 |
+
cont_list = []
|
134 |
+
mask_list = []
|
135 |
+
for pp in text_list:
|
136 |
+
cont = self.encode(pp, return_mask=return_mask)
|
137 |
+
cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
|
138 |
+
mask_list.append(cont[1]) if return_mask else mask_list.append(None)
|
139 |
+
if return_mask:
|
140 |
+
return cont_list, mask_list
|
141 |
+
else:
|
142 |
+
return cont_list
|
143 |
+
|
144 |
+
def encode_list_of_list(self, text_list, return_mask=True):
|
145 |
+
cont_list = []
|
146 |
+
mask_list = []
|
147 |
+
for pp in text_list:
|
148 |
+
cont = self.encode_list(pp, return_mask=return_mask)
|
149 |
+
cont_list.append(cont[0]) if return_mask else cont_list.append(cont)
|
150 |
+
mask_list.append(cont[1]) if return_mask else mask_list.append(None)
|
151 |
+
if return_mask:
|
152 |
+
return cont_list, mask_list
|
153 |
+
else:
|
154 |
+
return cont_list
|
155 |
+
|
156 |
+
def _clean(self, text):
|
157 |
+
if self.clean == 'whitespace':
|
158 |
+
text = whitespace_clean(basic_clean(text))
|
159 |
+
elif self.clean == 'lower':
|
160 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
161 |
+
elif self.clean == 'canonicalize':
|
162 |
+
text = canonicalize(basic_clean(text))
|
163 |
+
return text
|
164 |
+
@staticmethod
|
165 |
+
def get_config_template():
|
166 |
+
return dict_to_yaml('EMBEDDER',
|
167 |
+
__class__.__name__,
|
168 |
+
ACEHFEmbedder.para_dict,
|
169 |
+
set_name=True)
|
170 |
+
|
171 |
+
@EMBEDDERS.register_class()
|
172 |
+
class T5ACEPlusClipFluxEmbedder(BaseEmbedder):
|
173 |
+
"""
|
174 |
+
Uses the OpenCLIP transformer encoder for text
|
175 |
+
"""
|
176 |
+
para_dict = {
|
177 |
+
'T5_MODEL': {},
|
178 |
+
'CLIP_MODEL': {}
|
179 |
+
}
|
180 |
+
|
181 |
+
def __init__(self, cfg, logger=None):
|
182 |
+
super().__init__(cfg, logger=logger)
|
183 |
+
self.t5_model = EMBEDDERS.build(cfg.T5_MODEL, logger=logger)
|
184 |
+
self.clip_model = EMBEDDERS.build(cfg.CLIP_MODEL, logger=logger)
|
185 |
+
|
186 |
+
def encode(self, text, return_mask = False):
|
187 |
+
t5_embeds = self.t5_model.encode(text, return_mask = return_mask)
|
188 |
+
clip_embeds = self.clip_model.encode(text, return_mask = return_mask)
|
189 |
+
# change embedding strategy here
|
190 |
+
return {
|
191 |
+
'context': t5_embeds,
|
192 |
+
'y': clip_embeds,
|
193 |
+
}
|
194 |
+
|
195 |
+
def encode_list(self, text, return_mask = False):
|
196 |
+
t5_embeds = self.t5_model.encode_list(text, return_mask = return_mask)
|
197 |
+
clip_embeds = self.clip_model.encode_list(text, return_mask = return_mask)
|
198 |
+
# change embedding strategy here
|
199 |
+
return {
|
200 |
+
'context': t5_embeds,
|
201 |
+
'y': clip_embeds,
|
202 |
+
}
|
203 |
+
|
204 |
+
def encode_list_of_list(self, text, return_mask = False):
|
205 |
+
t5_embeds = self.t5_model.encode_list_of_list(text, return_mask = return_mask)
|
206 |
+
clip_embeds = self.clip_model.encode_list_of_list(text, return_mask = return_mask)
|
207 |
+
# change embedding strategy here
|
208 |
+
return {
|
209 |
+
'context': t5_embeds,
|
210 |
+
'y': clip_embeds,
|
211 |
+
}
|
212 |
+
|
213 |
+
|
214 |
+
@staticmethod
|
215 |
+
def get_config_template():
|
216 |
+
return dict_to_yaml('EMBEDDER',
|
217 |
+
__class__.__name__,
|
218 |
+
T5ACEPlusClipFluxEmbedder.para_dict,
|
219 |
+
set_name=True)
|
modules/flux.py
ADDED
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
# This file contains code that is adapted from
|
4 |
+
# https://github.com/black-forest-labs/flux.git
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import Tensor, nn
|
8 |
+
from collections import OrderedDict
|
9 |
+
from functools import partial
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
from scepter.modules.model.base_model import BaseModel
|
12 |
+
from scepter.modules.model.registry import BACKBONES
|
13 |
+
from scepter.modules.utils.config import dict_to_yaml
|
14 |
+
from scepter.modules.utils.distribute import we
|
15 |
+
from scepter.modules.utils.file_system import FS
|
16 |
+
from torch.utils.checkpoint import checkpoint_sequential
|
17 |
+
from torch.nn.utils.rnn import pad_sequence
|
18 |
+
from .layers import (DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder,
|
19 |
+
SingleStreamBlock, timestep_embedding)
|
20 |
+
@BACKBONES.register_class()
|
21 |
+
class Flux(BaseModel):
|
22 |
+
"""
|
23 |
+
Transformer backbone Diffusion model with RoPE.
|
24 |
+
"""
|
25 |
+
para_dict = {
|
26 |
+
'IN_CHANNELS': {
|
27 |
+
'value': 64,
|
28 |
+
'description': "model's input channels."
|
29 |
+
},
|
30 |
+
'OUT_CHANNELS': {
|
31 |
+
'value': 64,
|
32 |
+
'description': "model's output channels."
|
33 |
+
},
|
34 |
+
'HIDDEN_SIZE': {
|
35 |
+
'value': 1024,
|
36 |
+
'description': "model's hidden size."
|
37 |
+
},
|
38 |
+
'NUM_HEADS': {
|
39 |
+
'value': 16,
|
40 |
+
'description': 'number of heads in the transformer.'
|
41 |
+
},
|
42 |
+
'AXES_DIM': {
|
43 |
+
'value': [16, 56, 56],
|
44 |
+
'description': 'dimensions of the axes of the positional encoding.'
|
45 |
+
},
|
46 |
+
'THETA': {
|
47 |
+
'value': 10_000,
|
48 |
+
'description': 'theta for positional encoding.'
|
49 |
+
},
|
50 |
+
'VEC_IN_DIM': {
|
51 |
+
'value': 768,
|
52 |
+
'description': 'dimension of the vector input.'
|
53 |
+
},
|
54 |
+
'GUIDANCE_EMBED': {
|
55 |
+
'value': False,
|
56 |
+
'description': 'whether to use guidance embedding.'
|
57 |
+
},
|
58 |
+
'CONTEXT_IN_DIM': {
|
59 |
+
'value': 4096,
|
60 |
+
'description': 'dimension of the context input.'
|
61 |
+
},
|
62 |
+
'MLP_RATIO': {
|
63 |
+
'value': 4.0,
|
64 |
+
'description': 'ratio of mlp hidden size to hidden size.'
|
65 |
+
},
|
66 |
+
'QKV_BIAS': {
|
67 |
+
'value': True,
|
68 |
+
'description': 'whether to use bias in qkv projection.'
|
69 |
+
},
|
70 |
+
'DEPTH': {
|
71 |
+
'value': 19,
|
72 |
+
'description': 'number of transformer blocks.'
|
73 |
+
},
|
74 |
+
'DEPTH_SINGLE_BLOCKS': {
|
75 |
+
'value':
|
76 |
+
38,
|
77 |
+
'description':
|
78 |
+
'number of transformer blocks in the single stream block.'
|
79 |
+
},
|
80 |
+
'USE_GRAD_CHECKPOINT': {
|
81 |
+
'value': False,
|
82 |
+
'description': 'whether to use gradient checkpointing.'
|
83 |
+
}
|
84 |
+
}
|
85 |
+
|
86 |
+
def __init__(self, cfg, logger=None):
|
87 |
+
super().__init__(cfg, logger=logger)
|
88 |
+
self.in_channels = cfg.IN_CHANNELS
|
89 |
+
self.out_channels = cfg.get('OUT_CHANNELS', self.in_channels)
|
90 |
+
hidden_size = cfg.get('HIDDEN_SIZE', 1024)
|
91 |
+
num_heads = cfg.get('NUM_HEADS', 16)
|
92 |
+
axes_dim = cfg.AXES_DIM
|
93 |
+
theta = cfg.THETA
|
94 |
+
vec_in_dim = cfg.VEC_IN_DIM
|
95 |
+
self.guidance_embed = cfg.GUIDANCE_EMBED
|
96 |
+
context_in_dim = cfg.CONTEXT_IN_DIM
|
97 |
+
mlp_ratio = cfg.MLP_RATIO
|
98 |
+
qkv_bias = cfg.QKV_BIAS
|
99 |
+
depth = cfg.DEPTH
|
100 |
+
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS
|
101 |
+
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False)
|
102 |
+
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch")
|
103 |
+
self.cache_pretrain_model = cfg.get("CACHE_PRETRAIN_MODEL", False)
|
104 |
+
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None)
|
105 |
+
self.comfyui_lora_model = cfg.get("COMFYUI_LORA_MODEL", None)
|
106 |
+
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None)
|
107 |
+
self.blackforest_lora_model = cfg.get("BLACKFOREST_LORA_MODEL", None)
|
108 |
+
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None)
|
109 |
+
|
110 |
+
if hidden_size % num_heads != 0:
|
111 |
+
raise ValueError(
|
112 |
+
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
|
113 |
+
)
|
114 |
+
pe_dim = hidden_size // num_heads
|
115 |
+
if sum(axes_dim) != pe_dim:
|
116 |
+
raise ValueError(
|
117 |
+
f"Got {axes_dim} but expected positional dim {pe_dim}")
|
118 |
+
self.hidden_size = hidden_size
|
119 |
+
self.num_heads = num_heads
|
120 |
+
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim)
|
121 |
+
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
122 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
123 |
+
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
|
124 |
+
self.guidance_in = (MLPEmbedder(in_dim=256,
|
125 |
+
hidden_dim=self.hidden_size)
|
126 |
+
if self.guidance_embed else nn.Identity())
|
127 |
+
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
|
128 |
+
|
129 |
+
self.double_blocks = nn.ModuleList(
|
130 |
+
[
|
131 |
+
DoubleStreamBlock(
|
132 |
+
self.hidden_size,
|
133 |
+
self.num_heads,
|
134 |
+
mlp_ratio=mlp_ratio,
|
135 |
+
qkv_bias=qkv_bias,
|
136 |
+
backend=self.attn_backend
|
137 |
+
)
|
138 |
+
for _ in range(depth)
|
139 |
+
]
|
140 |
+
)
|
141 |
+
|
142 |
+
self.single_blocks = nn.ModuleList(
|
143 |
+
[
|
144 |
+
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend)
|
145 |
+
for _ in range(depth_single_blocks)
|
146 |
+
]
|
147 |
+
)
|
148 |
+
|
149 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
150 |
+
|
151 |
+
def prepare_input(self, x, context, y, x_shape=None):
|
152 |
+
# x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360]
|
153 |
+
bs, c, h, w = x.shape
|
154 |
+
x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
155 |
+
x_id = torch.zeros(h // 2, w // 2, 3)
|
156 |
+
x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None]
|
157 |
+
x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :]
|
158 |
+
x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs)
|
159 |
+
txt_ids = torch.zeros(bs, context.shape[1], 3)
|
160 |
+
return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w
|
161 |
+
|
162 |
+
def unpack(self, x: Tensor, height: int, width: int) -> Tensor:
|
163 |
+
return rearrange(
|
164 |
+
x,
|
165 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
166 |
+
h=math.ceil(height/2),
|
167 |
+
w=math.ceil(width/2),
|
168 |
+
ph=2,
|
169 |
+
pw=2,
|
170 |
+
)
|
171 |
+
|
172 |
+
def merge_diffuser_lora(self, ori_sd, lora_sd, scale=1.0):
|
173 |
+
key_map = {
|
174 |
+
"single_blocks.{}.linear1.weight": {"key_list": [
|
175 |
+
["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight",
|
176 |
+
"transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]],
|
177 |
+
["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight",
|
178 |
+
"transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]],
|
179 |
+
["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight",
|
180 |
+
"transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]],
|
181 |
+
["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight",
|
182 |
+
"transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight", [9216, 21504]]
|
183 |
+
], "num": 38},
|
184 |
+
"single_blocks.{}.modulation.lin.weight": {"key_list": [
|
185 |
+
["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight",
|
186 |
+
"transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight", [0, 9216]],
|
187 |
+
], "num": 38},
|
188 |
+
"single_blocks.{}.linear2.weight": {"key_list": [
|
189 |
+
["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight",
|
190 |
+
"transformer.single_transformer_blocks.{}.proj_out.lora_B.weight", [0, 3072]],
|
191 |
+
], "num": 38},
|
192 |
+
"double_blocks.{}.txt_attn.qkv.weight": {"key_list": [
|
193 |
+
["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight",
|
194 |
+
"transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight", [0, 3072]],
|
195 |
+
["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight",
|
196 |
+
"transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight", [3072, 6144]],
|
197 |
+
["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight",
|
198 |
+
"transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight", [6144, 9216]],
|
199 |
+
], "num": 19},
|
200 |
+
"double_blocks.{}.img_attn.qkv.weight": {"key_list": [
|
201 |
+
["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight",
|
202 |
+
"transformer.transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]],
|
203 |
+
["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight",
|
204 |
+
"transformer.transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]],
|
205 |
+
["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight",
|
206 |
+
"transformer.transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]],
|
207 |
+
], "num": 19},
|
208 |
+
"double_blocks.{}.img_attn.proj.weight": {"key_list": [
|
209 |
+
["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight",
|
210 |
+
"transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight", [0, 3072]]
|
211 |
+
], "num": 19},
|
212 |
+
"double_blocks.{}.txt_attn.proj.weight": {"key_list": [
|
213 |
+
["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight",
|
214 |
+
"transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight", [0, 3072]]
|
215 |
+
], "num": 19},
|
216 |
+
"double_blocks.{}.img_mlp.0.weight": {"key_list": [
|
217 |
+
["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight",
|
218 |
+
"transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight", [0, 12288]]
|
219 |
+
], "num": 19},
|
220 |
+
"double_blocks.{}.img_mlp.2.weight": {"key_list": [
|
221 |
+
["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight",
|
222 |
+
"transformer.transformer_blocks.{}.ff.net.2.lora_B.weight", [0, 3072]]
|
223 |
+
], "num": 19},
|
224 |
+
"double_blocks.{}.txt_mlp.0.weight": {"key_list": [
|
225 |
+
["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight",
|
226 |
+
"transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight", [0, 12288]]
|
227 |
+
], "num": 19},
|
228 |
+
"double_blocks.{}.txt_mlp.2.weight": {"key_list": [
|
229 |
+
["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight",
|
230 |
+
"transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight", [0, 3072]]
|
231 |
+
], "num": 19},
|
232 |
+
"double_blocks.{}.img_mod.lin.weight": {"key_list": [
|
233 |
+
["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight",
|
234 |
+
"transformer.transformer_blocks.{}.norm1.linear.lora_B.weight", [0, 18432]]
|
235 |
+
], "num": 19},
|
236 |
+
"double_blocks.{}.txt_mod.lin.weight": {"key_list": [
|
237 |
+
["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight",
|
238 |
+
"transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight", [0, 18432]]
|
239 |
+
], "num": 19}
|
240 |
+
}
|
241 |
+
cover_lora_keys = set()
|
242 |
+
cover_ori_keys = set()
|
243 |
+
for k, v in key_map.items():
|
244 |
+
key_list = v["key_list"]
|
245 |
+
block_num = v["num"]
|
246 |
+
for block_id in range(block_num):
|
247 |
+
for k_list in key_list:
|
248 |
+
if k_list[0].format(block_id) in lora_sd and k_list[1].format(block_id) in lora_sd:
|
249 |
+
cover_lora_keys.add(k_list[0].format(block_id))
|
250 |
+
cover_lora_keys.add(k_list[1].format(block_id))
|
251 |
+
current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0),
|
252 |
+
lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0)
|
253 |
+
ori_sd[k.format(block_id)][k_list[2][0]:k_list[2][1], ...] += scale * current_weight
|
254 |
+
cover_ori_keys.add(k.format(block_id))
|
255 |
+
# lora_sd.pop(k_list[0].format(block_id))
|
256 |
+
# lora_sd.pop(k_list[1].format(block_id))
|
257 |
+
self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n"
|
258 |
+
f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n"
|
259 |
+
f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}")
|
260 |
+
return ori_sd
|
261 |
+
|
262 |
+
def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0):
|
263 |
+
have_lora_keys = {}
|
264 |
+
for k, v in lora_sd.items():
|
265 |
+
k = k[len("model."):] if k.startswith("model.") else k
|
266 |
+
ori_key = k.split("lora")[0] + "weight"
|
267 |
+
if ori_key not in ori_sd:
|
268 |
+
raise f"{ori_key} should in the original statedict"
|
269 |
+
if ori_key not in have_lora_keys:
|
270 |
+
have_lora_keys[ori_key] = {}
|
271 |
+
if "lora_A" in k:
|
272 |
+
have_lora_keys[ori_key]["lora_A"] = v
|
273 |
+
elif "lora_B" in k:
|
274 |
+
have_lora_keys[ori_key]["lora_B"] = v
|
275 |
+
else:
|
276 |
+
raise NotImplementedError
|
277 |
+
self.logger.info(f"merge_swift_lora loads lora'parameters {len(have_lora_keys)}")
|
278 |
+
for key, v in have_lora_keys.items():
|
279 |
+
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
|
280 |
+
ori_sd[key] += scale * current_weight
|
281 |
+
return ori_sd
|
282 |
+
|
283 |
+
|
284 |
+
def merge_blackforest_lora(self, ori_sd, lora_sd, scale = 1.0):
|
285 |
+
have_lora_keys = {}
|
286 |
+
cover_lora_keys = set()
|
287 |
+
cover_ori_keys = set()
|
288 |
+
for k, v in lora_sd.items():
|
289 |
+
if "lora" in k:
|
290 |
+
ori_key = k.split("lora")[0] + "weight"
|
291 |
+
if ori_key not in ori_sd:
|
292 |
+
raise f"{ori_key} should in the original statedict"
|
293 |
+
if ori_key not in have_lora_keys:
|
294 |
+
have_lora_keys[ori_key] = {}
|
295 |
+
if "lora_A" in k:
|
296 |
+
have_lora_keys[ori_key]["lora_A"] = v
|
297 |
+
cover_lora_keys.add(k)
|
298 |
+
cover_ori_keys.add(ori_key)
|
299 |
+
elif "lora_B" in k:
|
300 |
+
have_lora_keys[ori_key]["lora_B"] = v
|
301 |
+
cover_lora_keys.add(k)
|
302 |
+
cover_ori_keys.add(ori_key)
|
303 |
+
else:
|
304 |
+
if k in ori_sd:
|
305 |
+
ori_sd[k] = v
|
306 |
+
cover_lora_keys.add(k)
|
307 |
+
cover_ori_keys.add(k)
|
308 |
+
else:
|
309 |
+
print("unsurpport keys: ", k)
|
310 |
+
self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n"
|
311 |
+
f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n"
|
312 |
+
f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}")
|
313 |
+
|
314 |
+
for key, v in have_lora_keys.items():
|
315 |
+
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
|
316 |
+
# print(key, ori_sd[key].shape, current_weight.shape)
|
317 |
+
ori_sd[key] += scale * current_weight
|
318 |
+
return ori_sd
|
319 |
+
|
320 |
+
def merge_comfyui_lora(self, ori_sd, lora_sd, scale = 1.0):
|
321 |
+
ori_key_map = {key.replace("_", ".") : key for key in ori_sd.keys()}
|
322 |
+
parse_ckpt = OrderedDict()
|
323 |
+
for k, v in lora_sd.items():
|
324 |
+
if "alpha" in k:
|
325 |
+
continue
|
326 |
+
k = k.replace("lora_unet_", "").replace("_", ".")
|
327 |
+
map_k = ori_key_map[k.split(".lora")[0] + ".weight"]
|
328 |
+
if map_k not in parse_ckpt:
|
329 |
+
parse_ckpt[map_k] = {}
|
330 |
+
if "lora.up" in k:
|
331 |
+
parse_ckpt[map_k]["lora_up"] = v
|
332 |
+
elif "lora.down" in k:
|
333 |
+
parse_ckpt[map_k]["lora_down"] = v
|
334 |
+
if self.cache_pretrain_model:
|
335 |
+
self.lora_dict[self.comfyui_lora_model] = {}
|
336 |
+
|
337 |
+
for key, v in parse_ckpt.items():
|
338 |
+
current_weight = torch.matmul(v["lora_down"].permute(1, 0), v["lora_up"].permute(1, 0)).permute(1, 0)
|
339 |
+
self.lora_dict[self.comfyui_lora_model] = current_weight
|
340 |
+
ori_sd[key] += scale * current_weight
|
341 |
+
return ori_sd
|
342 |
+
|
343 |
+
def easy_lora_merge(self, ori_sd, lora_sd, scale = 1.0):
|
344 |
+
for key, v in lora_sd.items():
|
345 |
+
ori_sd[key] += scale * v
|
346 |
+
return ori_sd
|
347 |
+
|
348 |
+
def load_pretrained_model(self, pretrained_model, lora_scale = 1.0):
|
349 |
+
if next(self.parameters()).device.type == 'meta':
|
350 |
+
map_location = torch.device(we.device_id)
|
351 |
+
safe_device = we.device_id
|
352 |
+
else:
|
353 |
+
map_location = "cpu"
|
354 |
+
safe_device = "cpu"
|
355 |
+
|
356 |
+
if pretrained_model is not None:
|
357 |
+
if not hasattr(self, "ckpt"):
|
358 |
+
with FS.get_from(pretrained_model, wait_finish=True) as local_model:
|
359 |
+
if local_model.endswith('safetensors'):
|
360 |
+
from safetensors.torch import load_file as load_safetensors
|
361 |
+
ckpt = load_safetensors(local_model, device=safe_device)
|
362 |
+
else:
|
363 |
+
ckpt = torch.load(local_model, map_location=map_location, weights_only=True)
|
364 |
+
if "state_dict" in ckpt:
|
365 |
+
ckpt = ckpt["state_dict"]
|
366 |
+
if "model" in ckpt:
|
367 |
+
ckpt = ckpt["model"]["model"]
|
368 |
+
if self.cache_pretrain_model:
|
369 |
+
self.ckpt = ckpt
|
370 |
+
self.lora_dict = {}
|
371 |
+
else:
|
372 |
+
ckpt = self.ckpt
|
373 |
+
|
374 |
+
new_ckpt = OrderedDict()
|
375 |
+
for k, v in ckpt.items():
|
376 |
+
if k in ("img_in.weight"):
|
377 |
+
model_p = self.state_dict()[k]
|
378 |
+
if v.shape != model_p.shape:
|
379 |
+
expanded_state_dict_weight = torch.zeros_like(model_p, device=v.device)
|
380 |
+
slices = tuple(slice(0, dim) for dim in v.shape)
|
381 |
+
expanded_state_dict_weight[slices] = v
|
382 |
+
new_ckpt[k] = expanded_state_dict_weight
|
383 |
+
else:
|
384 |
+
new_ckpt[k] = v
|
385 |
+
else:
|
386 |
+
new_ckpt[k] = v
|
387 |
+
|
388 |
+
|
389 |
+
if self.lora_model is not None:
|
390 |
+
with FS.get_from(self.lora_model, wait_finish=True) as local_model:
|
391 |
+
if local_model.endswith('safetensors'):
|
392 |
+
from safetensors.torch import load_file as load_safetensors
|
393 |
+
lora_sd = load_safetensors(local_model, device=safe_device)
|
394 |
+
else:
|
395 |
+
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
|
396 |
+
new_ckpt = self.merge_diffuser_lora(new_ckpt, lora_sd, scale=lora_scale)
|
397 |
+
if self.swift_lora_model is not None:
|
398 |
+
if not isinstance(self.swift_lora_model, list):
|
399 |
+
self.swift_lora_model = [(self.swift_lora_model, 1.0)]
|
400 |
+
for lora_model in self.swift_lora_model:
|
401 |
+
if isinstance(lora_model, str):
|
402 |
+
lora_model = (lora_model, 1.0/len(self.swift_lora_model))
|
403 |
+
print(lora_model)
|
404 |
+
self.logger.info(f"load swift lora model: {lora_model}")
|
405 |
+
with FS.get_from(lora_model[0], wait_finish=True) as local_model:
|
406 |
+
if local_model.endswith('safetensors'):
|
407 |
+
from safetensors.torch import load_file as load_safetensors
|
408 |
+
lora_sd = load_safetensors(local_model, device=safe_device)
|
409 |
+
else:
|
410 |
+
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
|
411 |
+
new_ckpt = self.merge_swift_lora(new_ckpt, lora_sd, scale=lora_model[1])
|
412 |
+
|
413 |
+
if self.blackforest_lora_model is not None:
|
414 |
+
with FS.get_from(self.blackforest_lora_model, wait_finish=True) as local_model:
|
415 |
+
if local_model.endswith('safetensors'):
|
416 |
+
from safetensors.torch import load_file as load_safetensors
|
417 |
+
lora_sd = load_safetensors(local_model, device=safe_device)
|
418 |
+
else:
|
419 |
+
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
|
420 |
+
new_ckpt = self.merge_blackforest_lora(new_ckpt, lora_sd, scale=lora_scale)
|
421 |
+
|
422 |
+
if self.comfyui_lora_model is not None:
|
423 |
+
if hasattr(self, "current_lora") and self.current_lora == self.comfyui_lora_model:
|
424 |
+
return
|
425 |
+
if hasattr(self, "lora_dict") and self.comfyui_lora_model in self.lora_dict:
|
426 |
+
new_ckpt = self.easy_lora_merge(new_ckpt, self.lora_dict[self.comfyui_lora_model], scale=lora_scale)
|
427 |
+
else:
|
428 |
+
with FS.get_from(self.comfyui_lora_model, wait_finish=True) as local_model:
|
429 |
+
if local_model.endswith('safetensors'):
|
430 |
+
from safetensors.torch import load_file as load_safetensors
|
431 |
+
lora_sd = load_safetensors(local_model, device=safe_device)
|
432 |
+
else:
|
433 |
+
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
|
434 |
+
new_ckpt = self.merge_comfyui_lora(new_ckpt, lora_sd, scale=lora_scale)
|
435 |
+
if self.comfyui_lora_model:
|
436 |
+
self.current_lora = self.comfyui_lora_model
|
437 |
+
|
438 |
+
|
439 |
+
adapter_ckpt = {}
|
440 |
+
if self.pretrain_adapter is not None:
|
441 |
+
with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter:
|
442 |
+
if local_adapter.endswith('safetensors'):
|
443 |
+
from safetensors.torch import load_file as load_safetensors
|
444 |
+
adapter_ckpt = load_safetensors(local_adapter, device=safe_device)
|
445 |
+
else:
|
446 |
+
adapter_ckpt = torch.load(local_adapter, map_location=map_location, weights_only=True)
|
447 |
+
new_ckpt.update(adapter_ckpt)
|
448 |
+
|
449 |
+
missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True)
|
450 |
+
self.logger.info(
|
451 |
+
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys'
|
452 |
+
)
|
453 |
+
if len(missing) > 0:
|
454 |
+
self.logger.info(f'Missing Keys:\n {missing}')
|
455 |
+
if len(unexpected) > 0:
|
456 |
+
self.logger.info(f'\nUnexpected Keys:\n {unexpected}')
|
457 |
+
|
458 |
+
def forward(
|
459 |
+
self,
|
460 |
+
x: Tensor,
|
461 |
+
t: Tensor,
|
462 |
+
cond: dict = {},
|
463 |
+
guidance: Tensor | None = None,
|
464 |
+
gc_seg: int = 0
|
465 |
+
) -> Tensor:
|
466 |
+
x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"])
|
467 |
+
# running on sequences img
|
468 |
+
x = self.img_in(x)
|
469 |
+
vec = self.time_in(timestep_embedding(t, 256))
|
470 |
+
if self.guidance_embed:
|
471 |
+
if guidance is None:
|
472 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
473 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
474 |
+
vec = vec + self.vector_in(y)
|
475 |
+
txt = self.txt_in(txt)
|
476 |
+
ids = torch.cat((txt_ids, x_ids), dim=1)
|
477 |
+
pe = self.pe_embedder(ids)
|
478 |
+
kwargs = dict(
|
479 |
+
vec=vec,
|
480 |
+
pe=pe,
|
481 |
+
txt_length=txt.shape[1],
|
482 |
+
)
|
483 |
+
x = torch.cat((txt, x), 1)
|
484 |
+
if self.use_grad_checkpoint and gc_seg >= 0:
|
485 |
+
x = checkpoint_sequential(
|
486 |
+
functions=[partial(block, **kwargs) for block in self.double_blocks],
|
487 |
+
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
|
488 |
+
input=x,
|
489 |
+
use_reentrant=False
|
490 |
+
)
|
491 |
+
else:
|
492 |
+
for block in self.double_blocks:
|
493 |
+
x = block(x, **kwargs)
|
494 |
+
|
495 |
+
kwargs = dict(
|
496 |
+
vec=vec,
|
497 |
+
pe=pe,
|
498 |
+
)
|
499 |
+
|
500 |
+
if self.use_grad_checkpoint and gc_seg >= 0:
|
501 |
+
x = checkpoint_sequential(
|
502 |
+
functions=[partial(block, **kwargs) for block in self.single_blocks],
|
503 |
+
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
|
504 |
+
input=x,
|
505 |
+
use_reentrant=False
|
506 |
+
)
|
507 |
+
else:
|
508 |
+
for block in self.single_blocks:
|
509 |
+
x = block(x, **kwargs)
|
510 |
+
x = x[:, txt.shape[1] :, ...]
|
511 |
+
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
|
512 |
+
x = self.unpack(x, h, w)
|
513 |
+
return x
|
514 |
+
|
515 |
+
@staticmethod
|
516 |
+
def get_config_template():
|
517 |
+
return dict_to_yaml('BACKBONE',
|
518 |
+
__class__.__name__,
|
519 |
+
Flux.para_dict,
|
520 |
+
set_name=True)
|
521 |
+
@BACKBONES.register_class()
|
522 |
+
class FluxMR(Flux):
|
523 |
+
def prepare_input(self, x, cond):
|
524 |
+
if isinstance(cond['context'], list):
|
525 |
+
context, y = torch.cat(cond["context"], dim=0).to(x), torch.cat(cond["y"], dim=0).to(x)
|
526 |
+
else:
|
527 |
+
context, y = cond['context'].to(x), cond['y'].to(x)
|
528 |
+
batch_frames, batch_frames_ids = [], []
|
529 |
+
for ix, shape in zip(x, cond["x_shapes"]):
|
530 |
+
# unpack image from sequence
|
531 |
+
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
|
532 |
+
c, h, w = ix.shape
|
533 |
+
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
|
534 |
+
ix_id = torch.zeros(h // 2, w // 2, 3)
|
535 |
+
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
|
536 |
+
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
|
537 |
+
ix_id = rearrange(ix_id, "h w c -> (h w) c")
|
538 |
+
batch_frames.append([ix])
|
539 |
+
batch_frames_ids.append([ix_id])
|
540 |
+
|
541 |
+
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
|
542 |
+
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
|
543 |
+
proj_frames = []
|
544 |
+
for idx, one_frame in enumerate(frames):
|
545 |
+
one_frame = self.img_in(one_frame)
|
546 |
+
proj_frames.append(one_frame)
|
547 |
+
ix = torch.cat(proj_frames, dim=0)
|
548 |
+
if_id = torch.cat(frame_ids, dim=0)
|
549 |
+
x_list.append(ix)
|
550 |
+
x_id_list.append(if_id)
|
551 |
+
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
|
552 |
+
x_seq_length.append(ix.shape[0])
|
553 |
+
x = pad_sequence(tuple(x_list), batch_first=True)
|
554 |
+
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
|
555 |
+
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
|
556 |
+
|
557 |
+
txt = self.txt_in(context)
|
558 |
+
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
|
559 |
+
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
|
560 |
+
|
561 |
+
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
|
562 |
+
|
563 |
+
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor:
|
564 |
+
x_list = []
|
565 |
+
image_shapes = cond["x_shapes"]
|
566 |
+
for u, shape, seq_length in zip(x, image_shapes, x_seq_length):
|
567 |
+
height, width = shape
|
568 |
+
h, w = math.ceil(height / 2), math.ceil(width / 2)
|
569 |
+
u = rearrange(
|
570 |
+
u[seq_length-h*w:seq_length, ...],
|
571 |
+
"(h w) (c ph pw) -> (h ph w pw) c",
|
572 |
+
h=h,
|
573 |
+
w=w,
|
574 |
+
ph=2,
|
575 |
+
pw=2,
|
576 |
+
)
|
577 |
+
x_list.append(u)
|
578 |
+
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1)
|
579 |
+
return x
|
580 |
+
|
581 |
+
def forward(
|
582 |
+
self,
|
583 |
+
x: Tensor,
|
584 |
+
t: Tensor,
|
585 |
+
cond: dict = {},
|
586 |
+
guidance: Tensor | None = None,
|
587 |
+
gc_seg: int = 0,
|
588 |
+
**kwargs
|
589 |
+
) -> Tensor:
|
590 |
+
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond)
|
591 |
+
# running on sequences img
|
592 |
+
vec = self.time_in(timestep_embedding(t, 256))
|
593 |
+
if self.guidance_embed and guidance[-1] >= 0:
|
594 |
+
if guidance is None:
|
595 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
596 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
597 |
+
vec = vec + self.vector_in(y)
|
598 |
+
ids = torch.cat((txt_ids, x_ids), dim=1)
|
599 |
+
pe = self.pe_embedder(ids)
|
600 |
+
|
601 |
+
mask_aside = torch.cat((mask_txt, mask_x), dim=1)
|
602 |
+
mask = mask_aside[:, None, :] * mask_aside[:, :, None]
|
603 |
+
|
604 |
+
kwargs = dict(
|
605 |
+
vec=vec,
|
606 |
+
pe=pe,
|
607 |
+
mask=mask,
|
608 |
+
txt_length = txt.shape[1],
|
609 |
+
)
|
610 |
+
x = torch.cat((txt, x), 1)
|
611 |
+
if self.use_grad_checkpoint and gc_seg >= 0:
|
612 |
+
x = checkpoint_sequential(
|
613 |
+
functions=[partial(block, **kwargs) for block in self.double_blocks],
|
614 |
+
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
|
615 |
+
input=x,
|
616 |
+
use_reentrant=False
|
617 |
+
)
|
618 |
+
else:
|
619 |
+
for block in self.double_blocks:
|
620 |
+
x = block(x, **kwargs)
|
621 |
+
|
622 |
+
kwargs = dict(
|
623 |
+
vec=vec,
|
624 |
+
pe=pe,
|
625 |
+
mask=mask,
|
626 |
+
)
|
627 |
+
|
628 |
+
if self.use_grad_checkpoint and gc_seg >= 0:
|
629 |
+
x = checkpoint_sequential(
|
630 |
+
functions=[partial(block, **kwargs) for block in self.single_blocks],
|
631 |
+
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
|
632 |
+
input=x,
|
633 |
+
use_reentrant=False
|
634 |
+
)
|
635 |
+
else:
|
636 |
+
for block in self.single_blocks:
|
637 |
+
x = block(x, **kwargs)
|
638 |
+
x = x[:, txt.shape[1]:, ...]
|
639 |
+
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
|
640 |
+
x = self.unpack(x, cond, seq_length_list)
|
641 |
+
return x
|
642 |
+
|
643 |
+
@staticmethod
|
644 |
+
def get_config_template():
|
645 |
+
return dict_to_yaml('MODEL',
|
646 |
+
__class__.__name__,
|
647 |
+
FluxMR.para_dict,
|
648 |
+
set_name=True)
|
649 |
+
@BACKBONES.register_class()
|
650 |
+
class FluxMRACEPlus(FluxMR):
|
651 |
+
def __init__(self, cfg, logger = None):
|
652 |
+
super().__init__(cfg, logger)
|
653 |
+
def prepare_input(self, x, cond):
|
654 |
+
context, y = cond["context"], cond["y"]
|
655 |
+
batch_frames, batch_frames_ids = [], []
|
656 |
+
for ix, shape, imask, ie, ie_mask in zip(x,
|
657 |
+
cond['x_shapes'],
|
658 |
+
cond['x_mask'],
|
659 |
+
cond['edit'],
|
660 |
+
cond['edit_mask']):
|
661 |
+
# unpack image from sequence
|
662 |
+
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
|
663 |
+
imask = torch.ones_like(
|
664 |
+
ix[[0], :, :]) if imask is None else imask.squeeze(0)
|
665 |
+
if len(ie) > 0:
|
666 |
+
ie = [iie.squeeze(0) for iie in ie]
|
667 |
+
ie_mask = [
|
668 |
+
torch.ones(
|
669 |
+
(ix.shape[0] * 4, ix.shape[1],
|
670 |
+
ix.shape[2])) if iime is None else iime.squeeze(0)
|
671 |
+
for iime in ie_mask
|
672 |
+
]
|
673 |
+
ie = torch.cat(ie, dim=-1)
|
674 |
+
ie_mask = torch.cat(ie_mask, dim=-1)
|
675 |
+
else:
|
676 |
+
ie, ie_mask = torch.zeros_like(ix).to(x), torch.ones_like(
|
677 |
+
imask).to(x),
|
678 |
+
ix = torch.cat([ix, ie, ie_mask], dim=0)
|
679 |
+
c, h, w = ix.shape
|
680 |
+
ix = rearrange(ix,
|
681 |
+
'c (h ph) (w pw) -> (h w) (c ph pw)',
|
682 |
+
ph=2,
|
683 |
+
pw=2)
|
684 |
+
ix_id = torch.zeros(h // 2, w // 2, 3)
|
685 |
+
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
|
686 |
+
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
|
687 |
+
ix_id = rearrange(ix_id, 'h w c -> (h w) c')
|
688 |
+
batch_frames.append([ix])
|
689 |
+
batch_frames_ids.append([ix_id])
|
690 |
+
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
|
691 |
+
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
|
692 |
+
proj_frames = []
|
693 |
+
for idx, one_frame in enumerate(frames):
|
694 |
+
one_frame = self.img_in(one_frame)
|
695 |
+
proj_frames.append(one_frame)
|
696 |
+
ix = torch.cat(proj_frames, dim=0)
|
697 |
+
if_id = torch.cat(frame_ids, dim=0)
|
698 |
+
x_list.append(ix)
|
699 |
+
x_id_list.append(if_id)
|
700 |
+
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
|
701 |
+
x_seq_length.append(ix.shape[0])
|
702 |
+
# if len(x_list) < 1: import pdb;pdb.set_trace()
|
703 |
+
x = pad_sequence(tuple(x_list), batch_first=True)
|
704 |
+
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
|
705 |
+
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
|
706 |
+
if isinstance(context, list):
|
707 |
+
txt_list, mask_txt_list, y_list = [], [], []
|
708 |
+
for sample_id, (ctx, yy) in enumerate(zip(context, y)):
|
709 |
+
txt_list.append(self.txt_in(ctx.to(x)))
|
710 |
+
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool())
|
711 |
+
y_list.append(yy.to(x))
|
712 |
+
txt = pad_sequence(tuple(txt_list), batch_first=True)
|
713 |
+
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x)
|
714 |
+
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True)
|
715 |
+
y = torch.cat(y_list, dim=0)
|
716 |
+
assert y.ndim == 2 and txt.ndim == 3
|
717 |
+
else:
|
718 |
+
txt = self.txt_in(context)
|
719 |
+
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
|
720 |
+
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
|
721 |
+
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
|
722 |
+
|
723 |
+
@staticmethod
|
724 |
+
def get_config_template():
|
725 |
+
return dict_to_yaml('MODEL',
|
726 |
+
__class__.__name__,
|
727 |
+
FluxMRACEPlus.para_dict,
|
728 |
+
set_name=True)
|
729 |
+
|
730 |
+
@BACKBONES.register_class()
|
731 |
+
class FluxMRModiACEPlus(FluxMR):
|
732 |
+
def __init__(self, cfg, logger = None):
|
733 |
+
super().__init__(cfg, logger)
|
734 |
+
def prepare_input(self, x, cond):
|
735 |
+
context, y = cond["context"], cond["y"]
|
736 |
+
batch_frames, batch_frames_ids = [], []
|
737 |
+
for ix, shape, imask, ie, im, ie_mask in zip(x,
|
738 |
+
cond['x_shapes'],
|
739 |
+
cond['x_mask'],
|
740 |
+
cond['edit'],
|
741 |
+
cond['modify'],
|
742 |
+
cond['edit_mask']):
|
743 |
+
# unpack image from sequence
|
744 |
+
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
|
745 |
+
imask = torch.ones_like(
|
746 |
+
ix[[0], :, :]) if imask is None else imask.squeeze(0)
|
747 |
+
if len(ie) > 0:
|
748 |
+
ie = [iie.squeeze(0) for iie in ie]
|
749 |
+
im = [iim.squeeze(0) for iim in im]
|
750 |
+
ie_mask = [
|
751 |
+
torch.ones(
|
752 |
+
(ix.shape[0] * 4, ix.shape[1],
|
753 |
+
ix.shape[2])) if iime is None else iime.squeeze(0)
|
754 |
+
for iime in ie_mask
|
755 |
+
]
|
756 |
+
im = torch.cat(im, dim=-1)
|
757 |
+
ie = torch.cat(ie, dim=-1)
|
758 |
+
ie_mask = torch.cat(ie_mask, dim=-1)
|
759 |
+
else:
|
760 |
+
ie, im, ie_mask = torch.zeros_like(ix).to(x), torch.zeros_like(ix).to(x), torch.ones_like(
|
761 |
+
imask).to(x),
|
762 |
+
ix = torch.cat([ix, ie, im, ie_mask], dim=0)
|
763 |
+
c, h, w = ix.shape
|
764 |
+
ix = rearrange(ix,
|
765 |
+
'c (h ph) (w pw) -> (h w) (c ph pw)',
|
766 |
+
ph=2,
|
767 |
+
pw=2)
|
768 |
+
ix_id = torch.zeros(h // 2, w // 2, 3)
|
769 |
+
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
|
770 |
+
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
|
771 |
+
ix_id = rearrange(ix_id, 'h w c -> (h w) c')
|
772 |
+
batch_frames.append([ix])
|
773 |
+
batch_frames_ids.append([ix_id])
|
774 |
+
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
|
775 |
+
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
|
776 |
+
proj_frames = []
|
777 |
+
for idx, one_frame in enumerate(frames):
|
778 |
+
one_frame = self.img_in(one_frame)
|
779 |
+
proj_frames.append(one_frame)
|
780 |
+
ix = torch.cat(proj_frames, dim=0)
|
781 |
+
if_id = torch.cat(frame_ids, dim=0)
|
782 |
+
x_list.append(ix)
|
783 |
+
x_id_list.append(if_id)
|
784 |
+
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
|
785 |
+
x_seq_length.append(ix.shape[0])
|
786 |
+
# if len(x_list) < 1: import pdb;pdb.set_trace()
|
787 |
+
x = pad_sequence(tuple(x_list), batch_first=True)
|
788 |
+
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
|
789 |
+
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
|
790 |
+
if isinstance(context, list):
|
791 |
+
txt_list, mask_txt_list, y_list = [], [], []
|
792 |
+
for sample_id, (ctx, yy) in enumerate(zip(context, y)):
|
793 |
+
txt_list.append(self.txt_in(ctx.to(x)))
|
794 |
+
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool())
|
795 |
+
y_list.append(yy.to(x))
|
796 |
+
txt = pad_sequence(tuple(txt_list), batch_first=True)
|
797 |
+
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x)
|
798 |
+
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True)
|
799 |
+
y = torch.cat(y_list, dim=0)
|
800 |
+
assert y.ndim == 2 and txt.ndim == 3
|
801 |
+
else:
|
802 |
+
txt = self.txt_in(context)
|
803 |
+
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
|
804 |
+
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
|
805 |
+
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
|
806 |
+
|
807 |
+
@staticmethod
|
808 |
+
def get_config_template():
|
809 |
+
return dict_to_yaml('MODEL',
|
810 |
+
__class__.__name__,
|
811 |
+
FluxMRACEPlus.para_dict,
|
812 |
+
set_name=True)
|
modules/layers.py
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Alibaba, Inc. and its affiliates.
|
3 |
+
# This file contains code that is adapted from
|
4 |
+
# https://github.com/black-forest-labs/flux.git
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
import math
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from torch import Tensor, nn
|
10 |
+
import torch
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
from torch import Tensor
|
13 |
+
from torch.nn.utils.rnn import pad_sequence
|
14 |
+
|
15 |
+
try:
|
16 |
+
from flash_attn import (
|
17 |
+
flash_attn_varlen_func
|
18 |
+
)
|
19 |
+
FLASHATTN_IS_AVAILABLE = True
|
20 |
+
except ImportError:
|
21 |
+
FLASHATTN_IS_AVAILABLE = False
|
22 |
+
flash_attn_varlen_func = None
|
23 |
+
|
24 |
+
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask: Tensor | None = None, backend = 'pytorch') -> Tensor:
|
25 |
+
q, k = apply_rope(q, k, pe)
|
26 |
+
if backend == 'pytorch':
|
27 |
+
if mask is not None and mask.dtype == torch.bool:
|
28 |
+
mask = torch.zeros_like(mask).to(q).masked_fill_(mask.logical_not(), -1e20)
|
29 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask)
|
30 |
+
# x = torch.nan_to_num(x, nan=0.0, posinf=1e10, neginf=-1e10)
|
31 |
+
x = rearrange(x, "B H L D -> B L (H D)")
|
32 |
+
elif backend == 'flash_attn':
|
33 |
+
# q: (B, H, L, D)
|
34 |
+
# k: (B, H, S, D) now L = S
|
35 |
+
# v: (B, H, S, D)
|
36 |
+
b, h, lq, d = q.shape
|
37 |
+
_, _, lk, _ = k.shape
|
38 |
+
q = rearrange(q, "B H L D -> B L H D")
|
39 |
+
k = rearrange(k, "B H S D -> B S H D")
|
40 |
+
v = rearrange(v, "B H S D -> B S H D")
|
41 |
+
if mask is None:
|
42 |
+
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(q.device, non_blocking=True)
|
43 |
+
k_lens = torch.tensor([lk] * b, dtype=torch.int32).to(k.device, non_blocking=True)
|
44 |
+
else:
|
45 |
+
q_lens = torch.sum(mask[:, 0, :, 0], dim=1).int()
|
46 |
+
k_lens = torch.sum(mask[:, 0, 0, :], dim=1).int()
|
47 |
+
q = torch.cat([q_v[:q_l] for q_v, q_l in zip(q, q_lens)])
|
48 |
+
k = torch.cat([k_v[:k_l] for k_v, k_l in zip(k, k_lens)])
|
49 |
+
v = torch.cat([v_v[:v_l] for v_v, v_l in zip(v, k_lens)])
|
50 |
+
cu_seqlens_q = torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(0, dtype=torch.int32)
|
51 |
+
cu_seqlens_k = torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(0, dtype=torch.int32)
|
52 |
+
max_seqlen_q = q_lens.max()
|
53 |
+
max_seqlen_k = k_lens.max()
|
54 |
+
|
55 |
+
x = flash_attn_varlen_func(
|
56 |
+
q,
|
57 |
+
k,
|
58 |
+
v,
|
59 |
+
cu_seqlens_q=cu_seqlens_q,
|
60 |
+
cu_seqlens_k=cu_seqlens_k,
|
61 |
+
max_seqlen_q=max_seqlen_q,
|
62 |
+
max_seqlen_k=max_seqlen_k
|
63 |
+
)
|
64 |
+
x_list = [x[cu_seqlens_q[i]:cu_seqlens_q[i+1]] for i in range(b)]
|
65 |
+
x = pad_sequence(tuple(x_list), batch_first=True)
|
66 |
+
x = rearrange(x, "B L H D -> B L (H D)")
|
67 |
+
else:
|
68 |
+
raise NotImplementedError
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
73 |
+
assert dim % 2 == 0
|
74 |
+
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
75 |
+
omega = 1.0 / (theta**scale)
|
76 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
77 |
+
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
78 |
+
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
79 |
+
return out.float()
|
80 |
+
|
81 |
+
|
82 |
+
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
83 |
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
84 |
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
85 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
86 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
87 |
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
88 |
+
|
89 |
+
class EmbedND(nn.Module):
|
90 |
+
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
91 |
+
super().__init__()
|
92 |
+
self.dim = dim
|
93 |
+
self.theta = theta
|
94 |
+
self.axes_dim = axes_dim
|
95 |
+
|
96 |
+
def forward(self, ids: Tensor) -> Tensor:
|
97 |
+
n_axes = ids.shape[-1]
|
98 |
+
emb = torch.cat(
|
99 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
100 |
+
dim=-3,
|
101 |
+
)
|
102 |
+
|
103 |
+
return emb.unsqueeze(1)
|
104 |
+
|
105 |
+
|
106 |
+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
107 |
+
"""
|
108 |
+
Create sinusoidal timestep embeddings.
|
109 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
110 |
+
These may be fractional.
|
111 |
+
:param dim: the dimension of the output.
|
112 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
113 |
+
:return: an (N, D) Tensor of positional embeddings.
|
114 |
+
"""
|
115 |
+
t = time_factor * t
|
116 |
+
half = dim // 2
|
117 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
118 |
+
t.device
|
119 |
+
)
|
120 |
+
|
121 |
+
args = t[:, None].float() * freqs[None]
|
122 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
123 |
+
if dim % 2:
|
124 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
125 |
+
if torch.is_floating_point(t):
|
126 |
+
embedding = embedding.to(t)
|
127 |
+
return embedding
|
128 |
+
|
129 |
+
|
130 |
+
class MLPEmbedder(nn.Module):
|
131 |
+
def __init__(self, in_dim: int, hidden_dim: int):
|
132 |
+
super().__init__()
|
133 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
134 |
+
self.silu = nn.SiLU()
|
135 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
136 |
+
|
137 |
+
def forward(self, x: Tensor) -> Tensor:
|
138 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
139 |
+
|
140 |
+
|
141 |
+
class RMSNorm(torch.nn.Module):
|
142 |
+
def __init__(self, dim: int):
|
143 |
+
super().__init__()
|
144 |
+
self.scale = nn.Parameter(torch.ones(dim))
|
145 |
+
|
146 |
+
def forward(self, x: Tensor):
|
147 |
+
x_dtype = x.dtype
|
148 |
+
x = x.float()
|
149 |
+
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
150 |
+
return (x * rrms).to(dtype=x_dtype) * self.scale
|
151 |
+
|
152 |
+
|
153 |
+
class QKNorm(torch.nn.Module):
|
154 |
+
def __init__(self, dim: int):
|
155 |
+
super().__init__()
|
156 |
+
self.query_norm = RMSNorm(dim)
|
157 |
+
self.key_norm = RMSNorm(dim)
|
158 |
+
|
159 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
160 |
+
q = self.query_norm(q)
|
161 |
+
k = self.key_norm(k)
|
162 |
+
return q.to(v), k.to(v)
|
163 |
+
|
164 |
+
|
165 |
+
class SelfAttention(nn.Module):
|
166 |
+
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
167 |
+
super().__init__()
|
168 |
+
self.num_heads = num_heads
|
169 |
+
head_dim = dim // num_heads
|
170 |
+
|
171 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
172 |
+
self.norm = QKNorm(head_dim)
|
173 |
+
self.proj = nn.Linear(dim, dim)
|
174 |
+
|
175 |
+
def forward(self, x: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor:
|
176 |
+
qkv = self.qkv(x)
|
177 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
178 |
+
q, k = self.norm(q, k, v)
|
179 |
+
x = attention(q, k, v, pe=pe, mask=mask)
|
180 |
+
x = self.proj(x)
|
181 |
+
return x
|
182 |
+
|
183 |
+
class CrossAttention(nn.Module):
|
184 |
+
def __init__(self, dim: int, context_dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
185 |
+
super().__init__()
|
186 |
+
self.num_heads = num_heads
|
187 |
+
head_dim = dim // num_heads
|
188 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
189 |
+
self.kv = nn.Linear(dim, context_dim * 2, bias=qkv_bias)
|
190 |
+
self.norm = QKNorm(head_dim)
|
191 |
+
self.proj = nn.Linear(dim, dim)
|
192 |
+
|
193 |
+
def forward(self, x: Tensor, context: Tensor, pe: Tensor, mask: Tensor | None = None) -> Tensor:
|
194 |
+
qkv = self.qkv(x)
|
195 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
196 |
+
q, k = self.norm(q, k, v)
|
197 |
+
x = attention(q, k, v, pe=pe, mask=mask)
|
198 |
+
x = self.proj(x)
|
199 |
+
return x
|
200 |
+
|
201 |
+
|
202 |
+
@dataclass
|
203 |
+
class ModulationOut:
|
204 |
+
shift: Tensor
|
205 |
+
scale: Tensor
|
206 |
+
gate: Tensor
|
207 |
+
|
208 |
+
|
209 |
+
class Modulation(nn.Module):
|
210 |
+
def __init__(self, dim: int, double: bool):
|
211 |
+
super().__init__()
|
212 |
+
self.is_double = double
|
213 |
+
self.multiplier = 6 if double else 3
|
214 |
+
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
215 |
+
|
216 |
+
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
217 |
+
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
218 |
+
|
219 |
+
return (
|
220 |
+
ModulationOut(*out[:3]),
|
221 |
+
ModulationOut(*out[3:]) if self.is_double else None,
|
222 |
+
)
|
223 |
+
|
224 |
+
|
225 |
+
class DoubleStreamBlock(nn.Module):
|
226 |
+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, backend = 'pytorch'):
|
227 |
+
super().__init__()
|
228 |
+
|
229 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
230 |
+
self.num_heads = num_heads
|
231 |
+
self.hidden_size = hidden_size
|
232 |
+
self.img_mod = Modulation(hidden_size, double=True)
|
233 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
234 |
+
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
235 |
+
|
236 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
237 |
+
self.img_mlp = nn.Sequential(
|
238 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
239 |
+
nn.GELU(approximate="tanh"),
|
240 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
241 |
+
)
|
242 |
+
|
243 |
+
self.backend = backend
|
244 |
+
|
245 |
+
self.txt_mod = Modulation(hidden_size, double=True)
|
246 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
247 |
+
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
248 |
+
|
249 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
250 |
+
self.txt_mlp = nn.Sequential(
|
251 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
252 |
+
nn.GELU(approximate="tanh"),
|
253 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
254 |
+
)
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None, txt_length = None):
|
260 |
+
img_mod1, img_mod2 = self.img_mod(vec)
|
261 |
+
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
262 |
+
|
263 |
+
txt, img = x[:, :txt_length], x[:, txt_length:]
|
264 |
+
|
265 |
+
# prepare image for attention
|
266 |
+
img_modulated = self.img_norm1(img)
|
267 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
268 |
+
img_qkv = self.img_attn.qkv(img_modulated)
|
269 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
270 |
+
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
271 |
+
# prepare txt for attention
|
272 |
+
txt_modulated = self.txt_norm1(txt)
|
273 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
274 |
+
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
275 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
276 |
+
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
277 |
+
|
278 |
+
# run actual attention
|
279 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
280 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
281 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
282 |
+
if mask is not None:
|
283 |
+
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads)
|
284 |
+
attn = attention(q, k, v, pe=pe, mask = mask, backend = self.backend)
|
285 |
+
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
286 |
+
|
287 |
+
# calculate the img bloks
|
288 |
+
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
289 |
+
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
290 |
+
|
291 |
+
# calculate the txt bloks
|
292 |
+
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
293 |
+
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
294 |
+
x = torch.cat((txt, img), 1)
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class SingleStreamBlock(nn.Module):
|
299 |
+
"""
|
300 |
+
A DiT block with parallel linear layers as described in
|
301 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
302 |
+
"""
|
303 |
+
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
hidden_size: int,
|
307 |
+
num_heads: int,
|
308 |
+
mlp_ratio: float = 4.0,
|
309 |
+
qk_scale: float | None = None,
|
310 |
+
backend='pytorch'
|
311 |
+
):
|
312 |
+
super().__init__()
|
313 |
+
self.hidden_dim = hidden_size
|
314 |
+
self.num_heads = num_heads
|
315 |
+
head_dim = hidden_size // num_heads
|
316 |
+
self.scale = qk_scale or head_dim**-0.5
|
317 |
+
|
318 |
+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
319 |
+
# qkv and mlp_in
|
320 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
321 |
+
# proj and mlp_out
|
322 |
+
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
323 |
+
|
324 |
+
self.norm = QKNorm(head_dim)
|
325 |
+
|
326 |
+
self.hidden_size = hidden_size
|
327 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
328 |
+
|
329 |
+
self.mlp_act = nn.GELU(approximate="tanh")
|
330 |
+
self.modulation = Modulation(hidden_size, double=False)
|
331 |
+
self.backend = backend
|
332 |
+
|
333 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None) -> Tensor:
|
334 |
+
mod, _ = self.modulation(vec)
|
335 |
+
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
336 |
+
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
337 |
+
|
338 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
339 |
+
q, k = self.norm(q, k, v)
|
340 |
+
if mask is not None:
|
341 |
+
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads)
|
342 |
+
# compute attention
|
343 |
+
attn = attention(q, k, v, pe=pe, mask = mask, backend=self.backend)
|
344 |
+
# compute activation in mlp stream, cat again and run second linear layer
|
345 |
+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
346 |
+
return x + mod.gate * output
|
347 |
+
|
348 |
+
|
349 |
+
class DoubleStreamBlockC(DoubleStreamBlock):
|
350 |
+
"""
|
351 |
+
A DiT block with parallel linear layers as described in
|
352 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
353 |
+
"""
|
354 |
+
|
355 |
+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float,
|
356 |
+
qkv_bias: bool = False, backend='pytorch',
|
357 |
+
abondon_cond = False):
|
358 |
+
super().__init__(hidden_size, num_heads, mlp_ratio,
|
359 |
+
qkv_bias, backend)
|
360 |
+
self.abondon_cond = abondon_cond
|
361 |
+
|
362 |
+
def forward(self, x: Tensor, vec: Tensor,
|
363 |
+
pe: Tensor, mask: Tensor = None,
|
364 |
+
txt_length=None,
|
365 |
+
uncondi_length=None,
|
366 |
+
uncondi_pe = None,
|
367 |
+
mask_uncond = None):
|
368 |
+
# pad_sequence(tuple(x_list), batch_first=True)
|
369 |
+
if self.abondon_cond:
|
370 |
+
x = [ix[:u_l, :] for ix, u_l in zip(x, uncondi_length)]
|
371 |
+
x = pad_sequence(x, batch_first=True)
|
372 |
+
if not x.shape[1] == pe.shape[2]:
|
373 |
+
pe = uncondi_pe
|
374 |
+
mask = mask_uncond
|
375 |
+
# print("double stream block", x.shape, pe.shape)
|
376 |
+
x = super().forward(x, vec, pe, mask, txt_length)
|
377 |
+
return x
|
378 |
+
|
379 |
+
class SingleStreamBlockC(SingleStreamBlock):
|
380 |
+
"""
|
381 |
+
A DiT block with parallel linear layers as described in
|
382 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
383 |
+
"""
|
384 |
+
|
385 |
+
def __init__(self, hidden_size: int,
|
386 |
+
num_heads: int,
|
387 |
+
mlp_ratio: float = 4.0,
|
388 |
+
qk_scale: float | None = None,
|
389 |
+
backend='pytorch',
|
390 |
+
abondon_cond = False):
|
391 |
+
super().__init__(hidden_size, num_heads, mlp_ratio,
|
392 |
+
qk_scale, backend)
|
393 |
+
self.abondon_cond = abondon_cond
|
394 |
+
|
395 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, mask: Tensor = None,
|
396 |
+
uncondi_length = None, uncondi_pe = None, mask_uncond = None) -> Tensor:
|
397 |
+
if self.abondon_cond:
|
398 |
+
x = [ix[:u_l, :] for ix, u_l in zip(x, uncondi_length)]
|
399 |
+
x = pad_sequence(x, batch_first=True)
|
400 |
+
if not x.shape[1] == pe.shape[2]:
|
401 |
+
pe = uncondi_pe
|
402 |
+
mask = mask_uncond
|
403 |
+
# print("single stream block", x.shape, pe.shape)
|
404 |
+
x = super().forward(x, vec, pe, mask)
|
405 |
+
return x
|
406 |
+
|
407 |
+
|
408 |
+
class DoubleStreamBlockD(DoubleStreamBlock):
|
409 |
+
"""
|
410 |
+
A DiT block with parallel linear layers as described in
|
411 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
412 |
+
"""
|
413 |
+
|
414 |
+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float,
|
415 |
+
qkv_bias: bool = False, backend='pytorch'):
|
416 |
+
super().__init__(hidden_size, num_heads, mlp_ratio,
|
417 |
+
qkv_bias, backend)
|
418 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
419 |
+
self.edit_mod = Modulation(hidden_size, double=True)
|
420 |
+
self.edit_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
421 |
+
self.edit_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
422 |
+
|
423 |
+
self.edit_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
424 |
+
self.edit_mlp = nn.Sequential(
|
425 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
426 |
+
nn.GELU(approximate="tanh"),
|
427 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
428 |
+
)
|
429 |
+
|
430 |
+
def forward(self, x: Tensor, vec: Tensor,
|
431 |
+
pe: Tensor, mask: Tensor = None,
|
432 |
+
txt_length=None,
|
433 |
+
edit_length=None):
|
434 |
+
if edit_length is not None:
|
435 |
+
txt, edit, img = x[:, :txt_length], x[:, txt_length:txt_length + edit_length], x[:, txt_length + edit_length:]
|
436 |
+
else:
|
437 |
+
txt, img = x[:, :txt_length], x[:, txt_length:]
|
438 |
+
img_mod1, img_mod2 = self.img_mod(vec)
|
439 |
+
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
440 |
+
# prepare image for attention
|
441 |
+
img_modulated = self.img_norm1(img)
|
442 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
443 |
+
img_qkv = self.img_attn.qkv(img_modulated)
|
444 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
445 |
+
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
446 |
+
# prepare txt for attention
|
447 |
+
txt_modulated = self.txt_norm1(txt)
|
448 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
449 |
+
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
450 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
451 |
+
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
452 |
+
|
453 |
+
if edit_length is not None:
|
454 |
+
edit_mod1, edit_mod2 = self.edit_mod(vec)
|
455 |
+
# prepare edit for attention
|
456 |
+
edit_modulated = self.edit_norm1(edit)
|
457 |
+
edit_modulated = (1 + edit_mod1.scale) * edit_modulated + edit_mod1.shift
|
458 |
+
edit_qkv = self.edit_attn.qkv(edit_modulated)
|
459 |
+
edit_q, edit_k, edit_v = rearrange(edit_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
460 |
+
edit_q, edit_k = self.edit_attn.norm(edit_q, edit_k, edit_v)
|
461 |
+
else:
|
462 |
+
edit_q, edit_k, edit_v = None, None, None
|
463 |
+
|
464 |
+
|
465 |
+
# run actual attention
|
466 |
+
q = torch.cat((txt_q,) + ((edit_q,) if edit_q is not None else ()) + (img_q,), dim=2)
|
467 |
+
k = torch.cat((txt_k,) + ((edit_k,) if edit_k is not None else ()) + (img_k,), dim=2)
|
468 |
+
v = torch.cat((txt_v,) + ((edit_v,) if edit_v is not None else ()) + (img_v,), dim=2)
|
469 |
+
if mask is not None:
|
470 |
+
mask = repeat(mask, 'B L S-> B H L S', H=self.num_heads)
|
471 |
+
attn = attention(q, k, v, pe=pe, mask=mask, backend=self.backend)
|
472 |
+
if edit_length is not None:
|
473 |
+
txt_attn, edit_attn, img_attn = attn[:, : txt_length], attn[:, txt_length:txt_length + edit_length ], attn[:, txt_length + edit_length:]
|
474 |
+
else:
|
475 |
+
txt_attn, img_attn = attn[:, : txt_length], attn[:, txt_length:]
|
476 |
+
|
477 |
+
# calculate the img bloks
|
478 |
+
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
479 |
+
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
480 |
+
|
481 |
+
# calculate the txt bloks
|
482 |
+
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
483 |
+
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
484 |
+
|
485 |
+
# calculate the img bloks
|
486 |
+
if edit_length is not None:
|
487 |
+
edit = edit + edit_mod1.gate * self.edit_attn.proj(edit_attn)
|
488 |
+
edit = edit + edit_mod2.gate * self.edit_mlp((1 + edit_mod2.scale) * self.edit_norm2(edit) + edit_mod2.shift)
|
489 |
+
x = torch.cat((txt, edit, img), 1)
|
490 |
+
else:
|
491 |
+
x = torch.cat((txt, img), 1)
|
492 |
+
return x
|
493 |
+
|
494 |
+
|
495 |
+
class LastLayer(nn.Module):
|
496 |
+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
497 |
+
super().__init__()
|
498 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
499 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
500 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
501 |
+
|
502 |
+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
503 |
+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
504 |
+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
505 |
+
x = self.linear(x)
|
506 |
+
return x
|
507 |
+
|
508 |
+
|
509 |
+
if __name__ == '__main__':
|
510 |
+
pe = EmbedND(dim=64, theta=10000, axes_dim=[16, 56, 56])
|
511 |
+
|
512 |
+
ix_id = torch.zeros(64 // 2, 64 // 2, 3)
|
513 |
+
ix_id[..., 1] = ix_id[..., 1] + torch.arange(64 // 2)[:, None]
|
514 |
+
ix_id[..., 2] = ix_id[..., 2] + torch.arange(64 // 2)[None, :]
|
515 |
+
ix_id = rearrange(ix_id, "h w c -> 1 (h w) c")
|
516 |
+
pos = torch.cat([ix_id, ix_id], dim = 1)
|
517 |
+
a = pe(pos)
|
518 |
+
|
519 |
+
b = torch.cat([pe(ix_id), pe(ix_id)], dim = 2)
|
520 |
+
|
521 |
+
print(a - b)
|