Spaces:
Running
on
Zero
Running
on
Zero
Update ace_inference.py
Browse files- ace_inference.py +162 -355
ace_inference.py
CHANGED
@@ -79,153 +79,19 @@ def process_edit_image(images,
|
|
79 |
mask_tensors.append(mask_tensor)
|
80 |
return img_tensors, mask_tensors
|
81 |
|
82 |
-
|
83 |
class TextEmbedding(nn.Module):
|
84 |
def __init__(self, embedding_shape):
|
85 |
super().__init__()
|
86 |
self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
|
87 |
|
88 |
-
class
|
89 |
-
def init_from_cfg(self, cfg):
|
90 |
-
super().init_from_cfg(cfg)
|
91 |
-
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION, logger=self.logger) \
|
92 |
-
if cfg.MODEL.have('DIFFUSION') else None
|
93 |
-
self.max_seq_length = cfg.MODEL.get("MAX_SEQ_LENGTH", 4096)
|
94 |
-
assert self.diffusion is not None
|
95 |
-
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
96 |
-
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
97 |
-
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
98 |
-
|
99 |
-
@torch.no_grad()
|
100 |
-
def encode_first_stage(self, x, **kwargs):
|
101 |
-
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
|
102 |
-
with torch.autocast('cuda',
|
103 |
-
enabled=dtype in ('float16', 'bfloat16'),
|
104 |
-
dtype=getattr(torch, dtype)):
|
105 |
-
def run_one_image(u):
|
106 |
-
zu = get_model(self.first_stage_model).encode(u)
|
107 |
-
if isinstance(zu, (tuple, list)):
|
108 |
-
zu = zu[0]
|
109 |
-
return zu
|
110 |
-
z = [run_one_image(u.unsqueeze(0) if u.dim == 3 else u) for u in x]
|
111 |
-
return z
|
112 |
-
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
|
113 |
-
c, H, W = image.shape
|
114 |
-
scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
|
115 |
-
rH = int(H * scale) // 16 * 16 # ensure divisible by self.d
|
116 |
-
rW = int(W * scale) // 16 * 16
|
117 |
-
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
|
118 |
-
return image
|
119 |
-
@torch.no_grad()
|
120 |
-
def decode_first_stage(self, z):
|
121 |
-
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
|
122 |
-
with torch.autocast('cuda',
|
123 |
-
enabled=dtype in ('float16', 'bfloat16'),
|
124 |
-
dtype=getattr(torch, dtype)):
|
125 |
-
return [get_model(self.first_stage_model).decode(zu) for zu in z]
|
126 |
-
|
127 |
-
def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
|
128 |
-
noise = torch.randn(
|
129 |
-
num_samples,
|
130 |
-
16,
|
131 |
-
# allow for packing
|
132 |
-
2 * math.ceil(h / 16),
|
133 |
-
2 * math.ceil(w / 16),
|
134 |
-
device=device,
|
135 |
-
dtype=dtype,
|
136 |
-
generator=torch.Generator(device=device).manual_seed(seed),
|
137 |
-
)
|
138 |
-
return noise
|
139 |
-
def refine(self,
|
140 |
-
x_samples=None,
|
141 |
-
prompt=None,
|
142 |
-
reverse_scale=-1.,
|
143 |
-
seed = 2024,
|
144 |
-
use_dynamic_model = False,
|
145 |
-
**kwargs
|
146 |
-
):
|
147 |
-
print(prompt)
|
148 |
-
value_input = copy.deepcopy(self.input)
|
149 |
-
x_samples = [self.upscale_resize(x) for x in x_samples]
|
150 |
-
|
151 |
-
noise = []
|
152 |
-
for i, x in enumerate(x_samples):
|
153 |
-
noise_ = self.noise_sample(1, x.shape[1],
|
154 |
-
x.shape[2], seed,
|
155 |
-
device = x.device)
|
156 |
-
noise.append(noise_)
|
157 |
-
noise, x_shapes = pack_imagelist_into_tensor(noise)
|
158 |
-
if reverse_scale > 0:
|
159 |
-
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
160 |
-
x_samples = [x.unsqueeze(0) for x in x_samples]
|
161 |
-
x_start = self.encode_first_stage(x_samples, **kwargs)
|
162 |
-
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
|
163 |
-
'first_stage_model',
|
164 |
-
skip_loaded=True)
|
165 |
-
x_start, _ = pack_imagelist_into_tensor(x_start)
|
166 |
-
else:
|
167 |
-
x_start = None
|
168 |
-
# cond stage
|
169 |
-
if use_dynamic_model: self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
170 |
-
function_name, dtype = self.get_function_info(self.cond_stage_model)
|
171 |
-
with torch.autocast('cuda',
|
172 |
-
enabled=dtype == 'float16',
|
173 |
-
dtype=getattr(torch, dtype)):
|
174 |
-
ctx = getattr(get_model(self.cond_stage_model),
|
175 |
-
function_name)(prompt)
|
176 |
-
ctx["x_shapes"] = x_shapes
|
177 |
-
if use_dynamic_model: self.dynamic_unload(self.cond_stage_model,
|
178 |
-
'cond_stage_model',
|
179 |
-
skip_loaded=True)
|
180 |
-
|
181 |
-
|
182 |
-
if use_dynamic_model: self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
183 |
-
# UNet use input n_prompt
|
184 |
-
function_name, dtype = self.get_function_info(
|
185 |
-
self.diffusion_model)
|
186 |
-
with torch.autocast('cuda',
|
187 |
-
enabled=dtype in ('float16', 'bfloat16'),
|
188 |
-
dtype=getattr(torch, dtype)):
|
189 |
-
solver_sample = value_input.get('sample', 'flow_euler')
|
190 |
-
sample_steps = value_input.get('sample_steps', 20)
|
191 |
-
guide_scale = value_input.get('guide_scale', 3.5)
|
192 |
-
if guide_scale is not None:
|
193 |
-
guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device,
|
194 |
-
dtype=noise.dtype)
|
195 |
-
else:
|
196 |
-
guide_scale = None
|
197 |
-
latent = self.diffusion.sample(
|
198 |
-
noise=noise,
|
199 |
-
sampler=solver_sample,
|
200 |
-
model=get_model(self.diffusion_model),
|
201 |
-
model_kwargs={"cond": ctx, "guidance": guide_scale},
|
202 |
-
steps=sample_steps,
|
203 |
-
show_progress=True,
|
204 |
-
guide_scale=guide_scale,
|
205 |
-
return_intermediate=None,
|
206 |
-
reverse_scale=reverse_scale,
|
207 |
-
x=x_start,
|
208 |
-
**kwargs).float()
|
209 |
-
latent = unpack_tensor_into_imagelist(latent, x_shapes)
|
210 |
-
if use_dynamic_model: self.dynamic_unload(self.diffusion_model,
|
211 |
-
'diffusion_model',
|
212 |
-
skip_loaded=True)
|
213 |
-
if use_dynamic_model: self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
214 |
-
x_samples = self.decode_first_stage(latent)
|
215 |
-
if use_dynamic_model: self.dynamic_unload(self.first_stage_model,
|
216 |
-
'first_stage_model',
|
217 |
-
skip_loaded=True)
|
218 |
-
return x_samples
|
219 |
-
|
220 |
-
|
221 |
-
class ACEInference(DiffusionInference):
|
222 |
def __init__(self, logger=None):
|
223 |
if logger is None:
|
224 |
logger = get_logger(name='scepter')
|
225 |
self.logger = logger
|
226 |
self.loaded_model = {}
|
227 |
self.loaded_model_name = [
|
228 |
-
'diffusion_model', 'first_stage_model', 'cond_stage_model'
|
229 |
]
|
230 |
|
231 |
def init_from_cfg(self, cfg):
|
@@ -234,7 +100,7 @@ class ACEInference(DiffusionInference):
|
|
234 |
self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
|
235 |
module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
|
236 |
assert cfg.have('MODEL')
|
237 |
-
|
238 |
self.diffusion_model = self.infer_model(
|
239 |
cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
|
240 |
'DIFFUSION_MODEL',
|
@@ -250,24 +116,23 @@ class ACEInference(DiffusionInference):
|
|
250 |
'COND_STAGE_MODEL',
|
251 |
None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
|
252 |
|
253 |
-
self.
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
self.refiner_module = RefinerInference(self.logger)
|
259 |
-
self.refiner_module.init_from_cfg(self.refiner_model_cfg)
|
260 |
-
else:
|
261 |
-
self.refiner_module = None
|
262 |
|
263 |
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
|
264 |
logger=self.logger)
|
265 |
-
|
266 |
-
|
267 |
self.interpolate_func = lambda x: (F.interpolate(
|
268 |
x.unsqueeze(0),
|
269 |
scale_factor=1 / self.size_factor,
|
270 |
mode='nearest-exact') if x is not None else None)
|
|
|
|
|
|
|
|
|
|
|
271 |
self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
|
272 |
self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
|
273 |
False)
|
@@ -277,41 +142,66 @@ class ACEInference(DiffusionInference):
|
|
277 |
else:
|
278 |
self.text_position_embeddings = None
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
@torch.no_grad()
|
290 |
def encode_first_stage(self, x, **kwargs):
|
291 |
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
|
292 |
with torch.autocast('cuda',
|
293 |
-
enabled=
|
294 |
dtype=getattr(torch, dtype)):
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
300 |
|
301 |
@torch.no_grad()
|
302 |
def decode_first_stage(self, z):
|
303 |
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
|
304 |
with torch.autocast('cuda',
|
305 |
-
enabled=
|
306 |
dtype=getattr(torch, dtype)):
|
307 |
-
|
308 |
-
get_model(self.first_stage_model)._decode(
|
309 |
-
1. / self.scale_factor * i.to(getattr(torch, dtype)))
|
310 |
-
for i in z
|
311 |
-
]
|
312 |
-
return x
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
@torch.no_grad()
|
317 |
def __call__(self,
|
@@ -320,48 +210,35 @@ class ACEInference(DiffusionInference):
|
|
320 |
prompt='',
|
321 |
task=None,
|
322 |
negative_prompt='',
|
323 |
-
output_height=
|
324 |
-
output_width=
|
325 |
-
sampler='
|
326 |
sample_steps=20,
|
327 |
-
guide_scale=
|
328 |
-
guide_rescale=0.5,
|
329 |
seed=-1,
|
330 |
history_io=None,
|
331 |
tar_index=0,
|
|
|
332 |
**kwargs):
|
333 |
input_image, input_mask = image, mask
|
334 |
-
g = torch.Generator(device=we.device_id)
|
335 |
seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
|
336 |
-
g.manual_seed(int(seed))
|
337 |
if input_image is not None:
|
338 |
# assert isinstance(input_image, list) and isinstance(input_mask, list)
|
339 |
if task is None:
|
340 |
task = [''] * len(input_image)
|
341 |
if not isinstance(prompt, list):
|
342 |
prompt = [prompt] * len(input_image)
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
assert len(his_image) == len(his_maks) == len(
|
348 |
-
his_prompt) == len(his_task)
|
349 |
-
input_image = his_image + input_image
|
350 |
-
input_mask = his_maks + input_mask
|
351 |
-
task = his_task + task
|
352 |
-
prompt = his_prompt + [prompt[-1]]
|
353 |
-
prompt = [
|
354 |
-
pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
|
355 |
-
for i, pp in enumerate(prompt)
|
356 |
-
]
|
357 |
-
|
358 |
edit_image, edit_image_mask = process_edit_image(
|
359 |
-
input_image, input_mask, task, max_seq_len=self.
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
363 |
edit_image, edit_image_mask = [edit_image], [edit_image_mask]
|
364 |
-
|
365 |
else:
|
366 |
edit_image = edit_image_mask = [[]]
|
367 |
image = torch.zeros(
|
@@ -373,177 +250,107 @@ class ACEInference(DiffusionInference):
|
|
373 |
if not isinstance(prompt, list):
|
374 |
prompt = [prompt]
|
375 |
|
376 |
-
image, image_mask, prompt = [image], [image_mask], [prompt]
|
|
|
|
|
377 |
assert check_list_of_list(prompt) and check_list_of_list(
|
378 |
edit_image) and check_list_of_list(edit_image_mask)
|
379 |
-
#
|
380 |
-
if isinstance(negative_prompt, list):
|
381 |
-
negative_prompt = negative_prompt[0]
|
382 |
-
assert isinstance(negative_prompt, str)
|
383 |
-
|
384 |
-
n_prompt = copy.deepcopy(prompt)
|
385 |
-
for nn_p_id, nn_p in enumerate(n_prompt):
|
386 |
-
assert isinstance(nn_p, list)
|
387 |
-
n_prompt[nn_p_id][-1] = negative_prompt
|
388 |
-
|
389 |
-
is_txt_image = sum([len(e_i) for e_i in edit_image]) < 1
|
390 |
image = to_device(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
-
|
393 |
-
refiner_prompt = kwargs.pop("refiner_prompt", "")
|
394 |
-
use_ace = kwargs.pop("use_ace", True)
|
395 |
-
# <= 0 use ace as the txt2img generator.
|
396 |
-
if use_ace and (not is_txt_image or refiner_scale <= 0):
|
397 |
-
ctx, null_ctx = {}, {}
|
398 |
-
# Get Noise Shape
|
399 |
-
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
400 |
-
x = self.encode_first_stage(image)
|
401 |
-
self.dynamic_unload(self.first_stage_model,
|
402 |
-
'first_stage_model',
|
403 |
-
skip_loaded=True)
|
404 |
-
noise = [
|
405 |
-
torch.empty(*i.shape, device=we.device_id).normal_(generator=g)
|
406 |
-
for i in x
|
407 |
-
]
|
408 |
-
noise, x_shapes = pack_imagelist_into_tensor(noise)
|
409 |
-
ctx['x_shapes'] = null_ctx['x_shapes'] = x_shapes
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
|
437 |
-
e_img, e_mask = [], []
|
438 |
-
for u, m in zip(edit_image, edit_image_mask):
|
439 |
-
if u is None:
|
440 |
-
continue
|
441 |
-
if m is None:
|
442 |
-
m = [None] * len(u)
|
443 |
-
e_img.append(self.encode_first_stage(u, **kwargs))
|
444 |
-
e_mask.append([self.interpolate_func(i) for i in m])
|
445 |
-
self.dynamic_unload(self.first_stage_model,
|
446 |
-
'first_stage_model',
|
447 |
-
skip_loaded=True)
|
448 |
-
null_ctx['edit'] = ctx['edit'] = e_img
|
449 |
-
null_ctx['edit_mask'] = ctx['edit_mask'] = e_mask
|
450 |
-
|
451 |
-
# Diffusion Process
|
452 |
-
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
453 |
-
function_name, dtype = self.get_function_info(self.diffusion_model)
|
454 |
-
with torch.autocast('cuda',
|
455 |
-
enabled=dtype in ('float16', 'bfloat16'),
|
456 |
-
dtype=getattr(torch, dtype)):
|
457 |
-
latent = self.diffusion.sample(
|
458 |
-
noise=noise,
|
459 |
-
sampler=sampler,
|
460 |
-
model=get_model(self.diffusion_model),
|
461 |
-
model_kwargs=[{
|
462 |
-
'cond':
|
463 |
-
ctx,
|
464 |
-
'mask':
|
465 |
-
cont_mask,
|
466 |
-
'text_position_embeddings':
|
467 |
-
self.text_position_embeddings.pos if hasattr(
|
468 |
-
self.text_position_embeddings, 'pos') else None
|
469 |
-
}, {
|
470 |
-
'cond':
|
471 |
-
null_ctx,
|
472 |
-
'mask':
|
473 |
-
null_cont_mask,
|
474 |
-
'text_position_embeddings':
|
475 |
-
self.text_position_embeddings.pos if hasattr(
|
476 |
-
self.text_position_embeddings, 'pos') else None
|
477 |
-
}] if guide_scale is not None and guide_scale > 1 else {
|
478 |
-
'cond':
|
479 |
-
null_ctx,
|
480 |
-
'mask':
|
481 |
-
cont_mask,
|
482 |
-
'text_position_embeddings':
|
483 |
-
self.text_position_embeddings.pos if hasattr(
|
484 |
-
self.text_position_embeddings, 'pos') else None
|
485 |
-
},
|
486 |
-
steps=sample_steps,
|
487 |
-
show_progress=True,
|
488 |
-
seed=seed,
|
489 |
-
guide_scale=guide_scale,
|
490 |
-
guide_rescale=guide_rescale,
|
491 |
-
return_intermediate=None,
|
492 |
-
**kwargs)
|
493 |
-
self.dynamic_unload(self.diffusion_model,
|
494 |
-
'diffusion_model',
|
495 |
-
skip_loaded=False)
|
496 |
-
|
497 |
-
# Decode to Pixel Space
|
498 |
-
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
499 |
-
samples = unpack_tensor_into_imagelist(latent, x_shapes)
|
500 |
-
x_samples = self.decode_first_stage(samples)
|
501 |
-
self.dynamic_unload(self.first_stage_model,
|
502 |
-
'first_stage_model',
|
503 |
-
skip_loaded=False)
|
504 |
-
x_samples = [x.squeeze(0) for x in x_samples]
|
505 |
else:
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
imgs = [
|
524 |
-
torch.clamp((x_i.float() + 1.0) / 2.0
|
525 |
min=0.0,
|
526 |
max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
|
527 |
for x_i in x_samples
|
528 |
]
|
529 |
imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
|
530 |
return imgs
|
531 |
-
|
532 |
-
def cond_stage_embeddings(self, prompt, edit_image, cont, cont_mask):
|
533 |
-
if self.use_text_pos_embeddings and not torch.sum(
|
534 |
-
self.text_position_embeddings.pos) > 0:
|
535 |
-
identifier_cont, _ = getattr(get_model(self.cond_stage_model),
|
536 |
-
'encode')(self.text_indentifers,
|
537 |
-
return_mask=True)
|
538 |
-
self.text_position_embeddings.load_state_dict(
|
539 |
-
{'pos': identifier_cont[:, 0, :]})
|
540 |
-
|
541 |
-
cont_, cont_mask_ = [], []
|
542 |
-
for pp, edit, c, cm in zip(prompt, edit_image, cont, cont_mask):
|
543 |
-
if isinstance(pp, list):
|
544 |
-
cont_.append([c[-1], *c] if len(edit) > 0 else [c[-1]])
|
545 |
-
cont_mask_.append([cm[-1], *cm] if len(edit) > 0 else [cm[-1]])
|
546 |
-
else:
|
547 |
-
raise NotImplementedError
|
548 |
-
|
549 |
-
return cont_, cont_mask_
|
|
|
79 |
mask_tensors.append(mask_tensor)
|
80 |
return img_tensors, mask_tensors
|
81 |
|
|
|
82 |
class TextEmbedding(nn.Module):
|
83 |
def __init__(self, embedding_shape):
|
84 |
super().__init__()
|
85 |
self.pos = nn.Parameter(data=torch.zeros(embedding_shape))
|
86 |
|
87 |
+
class ACEFluxLCInference(DiffusionInference):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def __init__(self, logger=None):
|
89 |
if logger is None:
|
90 |
logger = get_logger(name='scepter')
|
91 |
self.logger = logger
|
92 |
self.loaded_model = {}
|
93 |
self.loaded_model_name = [
|
94 |
+
'diffusion_model', 'first_stage_model', 'cond_stage_model', 'ref_cond_stage_model'
|
95 |
]
|
96 |
|
97 |
def init_from_cfg(self, cfg):
|
|
|
100 |
self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True)
|
101 |
module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None))
|
102 |
assert cfg.have('MODEL')
|
103 |
+
self.size_factor = cfg.get('SIZE_FACTOR', 8)
|
104 |
self.diffusion_model = self.infer_model(
|
105 |
cfg.MODEL.DIFFUSION_MODEL, module_paras.get(
|
106 |
'DIFFUSION_MODEL',
|
|
|
116 |
'COND_STAGE_MODEL',
|
117 |
None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None
|
118 |
|
119 |
+
self.ref_cond_stage_model = self.infer_model(
|
120 |
+
cfg.MODEL.REF_COND_STAGE_MODEL,
|
121 |
+
module_paras.get(
|
122 |
+
'REF_COND_STAGE_MODEL',
|
123 |
+
None)) if cfg.MODEL.have('REF_COND_STAGE_MODEL') else None
|
|
|
|
|
|
|
|
|
124 |
|
125 |
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION,
|
126 |
logger=self.logger)
|
|
|
|
|
127 |
self.interpolate_func = lambda x: (F.interpolate(
|
128 |
x.unsqueeze(0),
|
129 |
scale_factor=1 / self.size_factor,
|
130 |
mode='nearest-exact') if x is not None else None)
|
131 |
+
|
132 |
+
self.max_seq_length = cfg.get("MAX_SEQ_LENGTH", 4096)
|
133 |
+
self.src_max_seq_length = cfg.get("SRC_MAX_SEQ_LENGTH", 1024)
|
134 |
+
self.image_token = cfg.MODEL.get("IMAGE_TOKEN", "<img>")
|
135 |
+
|
136 |
self.text_indentifers = cfg.MODEL.get('TEXT_IDENTIFIER', [])
|
137 |
self.use_text_pos_embeddings = cfg.MODEL.get('USE_TEXT_POS_EMBEDDINGS',
|
138 |
False)
|
|
|
142 |
else:
|
143 |
self.text_position_embeddings = None
|
144 |
|
145 |
+
if not self.use_dynamic_model:
|
146 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
147 |
+
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
148 |
+
if self.ref_cond_stage_model is not None: self.dynamic_load(self.ref_cond_stage_model, 'ref_cond_stage_model')
|
149 |
+
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
150 |
+
|
151 |
+
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR):
|
152 |
+
c, H, W = image.shape
|
153 |
+
scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16))))
|
154 |
+
rH = int(H * scale) // 16 * 16 # ensure divisible by self.d
|
155 |
+
rW = int(W * scale) // 16 * 16
|
156 |
+
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image)
|
157 |
+
return image
|
158 |
+
|
159 |
|
160 |
@torch.no_grad()
|
161 |
def encode_first_stage(self, x, **kwargs):
|
162 |
_, dtype = self.get_function_info(self.first_stage_model, 'encode')
|
163 |
with torch.autocast('cuda',
|
164 |
+
enabled=dtype in ('float16', 'bfloat16'),
|
165 |
dtype=getattr(torch, dtype)):
|
166 |
+
def run_one_image(u):
|
167 |
+
zu = get_model(self.first_stage_model).encode(u)
|
168 |
+
if isinstance(zu, (tuple, list)):
|
169 |
+
zu = zu[0]
|
170 |
+
return zu
|
171 |
+
|
172 |
+
z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x]
|
173 |
+
return z
|
174 |
+
|
175 |
|
176 |
@torch.no_grad()
|
177 |
def decode_first_stage(self, z):
|
178 |
_, dtype = self.get_function_info(self.first_stage_model, 'decode')
|
179 |
with torch.autocast('cuda',
|
180 |
+
enabled=dtype in ('float16', 'bfloat16'),
|
181 |
dtype=getattr(torch, dtype)):
|
182 |
+
return [get_model(self.first_stage_model).decode(zu) for zu in z]
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16):
|
185 |
+
noise = torch.randn(
|
186 |
+
num_samples,
|
187 |
+
16,
|
188 |
+
# allow for packing
|
189 |
+
2 * math.ceil(h / 16),
|
190 |
+
2 * math.ceil(w / 16),
|
191 |
+
device=device,
|
192 |
+
dtype=dtype,
|
193 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
194 |
+
)
|
195 |
+
return noise
|
196 |
|
197 |
+
# def preprocess_prompt(self, prompt):
|
198 |
+
# prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
|
199 |
+
# for pp_id, pp in enumerate(prompt_):
|
200 |
+
# prompt_[pp_id] = [""] + pp
|
201 |
+
# for p_id, p in enumerate(prompt_[pp_id]):
|
202 |
+
# prompt_[pp_id][p_id] = self.image_token + self.text_indentifers[p_id] + " " + p
|
203 |
+
# prompt_[pp_id] = [f";".join(prompt_[pp_id])]
|
204 |
+
# return prompt_
|
205 |
|
206 |
@torch.no_grad()
|
207 |
def __call__(self,
|
|
|
210 |
prompt='',
|
211 |
task=None,
|
212 |
negative_prompt='',
|
213 |
+
output_height=1024,
|
214 |
+
output_width=1024,
|
215 |
+
sampler='flow_euler',
|
216 |
sample_steps=20,
|
217 |
+
guide_scale=3.5,
|
|
|
218 |
seed=-1,
|
219 |
history_io=None,
|
220 |
tar_index=0,
|
221 |
+
align=0,
|
222 |
**kwargs):
|
223 |
input_image, input_mask = image, mask
|
|
|
224 |
seed = seed if seed >= 0 else random.randint(0, 2**32 - 1)
|
|
|
225 |
if input_image is not None:
|
226 |
# assert isinstance(input_image, list) and isinstance(input_mask, list)
|
227 |
if task is None:
|
228 |
task = [''] * len(input_image)
|
229 |
if not isinstance(prompt, list):
|
230 |
prompt = [prompt] * len(input_image)
|
231 |
+
prompt = [
|
232 |
+
pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp
|
233 |
+
for i, pp in enumerate(prompt)
|
234 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
edit_image, edit_image_mask = process_edit_image(
|
236 |
+
input_image, input_mask, task, max_seq_len=self.src_max_seq_length)
|
237 |
+
image, image_mask = self.upscale_resize(edit_image[tar_index]), self.upscale_resize(edit_image_mask[
|
238 |
+
tar_index])
|
239 |
+
# edit_image, edit_image_mask = [[self.upscale_resize(i) for i in edit_image]], [[self.upscale_resize(i) for i in edit_image_mask]]
|
240 |
+
# image, image_mask = edit_image[tar_index], edit_image_mask[tar_index]
|
241 |
edit_image, edit_image_mask = [edit_image], [edit_image_mask]
|
|
|
242 |
else:
|
243 |
edit_image = edit_image_mask = [[]]
|
244 |
image = torch.zeros(
|
|
|
250 |
if not isinstance(prompt, list):
|
251 |
prompt = [prompt]
|
252 |
|
253 |
+
image, image_mask, prompt = [image], [image_mask], [prompt],
|
254 |
+
align = [align for p in prompt] if isinstance(align, int) else align
|
255 |
+
|
256 |
assert check_list_of_list(prompt) and check_list_of_list(
|
257 |
edit_image) and check_list_of_list(edit_image_mask)
|
258 |
+
# negative prompt is not used
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
image = to_device(image)
|
260 |
+
ctx = {}
|
261 |
+
# Get Noise Shape
|
262 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
263 |
+
x = self.encode_first_stage(image)
|
264 |
+
self.dynamic_unload(self.first_stage_model,
|
265 |
+
'first_stage_model',
|
266 |
+
skip_loaded=not self.use_dynamic_model)
|
267 |
|
268 |
+
g = torch.Generator(device=we.device_id).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
+
noise = [
|
271 |
+
torch.randn((1, 16, i.shape[2], i.shape[3]), device=we.device_id, dtype=torch.bfloat16).normal_(generator=g)
|
272 |
+
for i in x
|
273 |
+
]
|
274 |
+
noise, x_shapes = pack_imagelist_into_tensor(noise)
|
275 |
+
ctx['x_shapes'] = x_shapes
|
276 |
+
ctx['align'] = align
|
277 |
+
|
278 |
+
image_mask = to_device(image_mask, strict=False)
|
279 |
+
cond_mask = [self.interpolate_func(i) for i in image_mask
|
280 |
+
] if image_mask is not None else [None] * len(image)
|
281 |
+
ctx['x_mask'] = cond_mask
|
282 |
+
# Encode Prompt
|
283 |
+
instruction_prompt = [[pp[-1]] if "{image}" in pp[-1] else ["{image} " + pp[-1]] for pp in prompt]
|
284 |
+
self.dynamic_load(self.cond_stage_model, 'cond_stage_model')
|
285 |
+
function_name, dtype = self.get_function_info(self.cond_stage_model)
|
286 |
+
cont = getattr(get_model(self.cond_stage_model), function_name)(instruction_prompt)
|
287 |
+
cont["context"] = [ct[-1] for ct in cont["context"]]
|
288 |
+
cont["y"] = [ct[-1] for ct in cont["y"]]
|
289 |
+
self.dynamic_unload(self.cond_stage_model,
|
290 |
+
'cond_stage_model',
|
291 |
+
skip_loaded=not self.use_dynamic_model)
|
292 |
+
ctx.update(cont)
|
293 |
|
294 |
+
# Encode Edit Images
|
295 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
296 |
+
edit_image = [to_device(i, strict=False) for i in edit_image]
|
297 |
+
edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask]
|
298 |
+
e_img, e_mask = [], []
|
299 |
+
for u, m in zip(edit_image, edit_image_mask):
|
300 |
+
if u is None:
|
301 |
+
continue
|
302 |
+
if m is None:
|
303 |
+
m = [None] * len(u)
|
304 |
+
e_img.append(self.encode_first_stage(u, **kwargs))
|
305 |
+
e_mask.append([self.interpolate_func(i) for i in m])
|
306 |
+
self.dynamic_unload(self.first_stage_model,
|
307 |
+
'first_stage_model',
|
308 |
+
skip_loaded=not self.use_dynamic_model)
|
309 |
+
ctx['edit_x'] = e_img
|
310 |
+
ctx['edit_mask'] = e_mask
|
311 |
+
# Encode Ref Images
|
312 |
+
if guide_scale is not None:
|
313 |
+
guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device, dtype=noise.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
else:
|
315 |
+
guide_scale = None
|
316 |
+
|
317 |
+
# Diffusion Process
|
318 |
+
self.dynamic_load(self.diffusion_model, 'diffusion_model')
|
319 |
+
function_name, dtype = self.get_function_info(self.diffusion_model)
|
320 |
+
with torch.autocast('cuda',
|
321 |
+
enabled=dtype in ('float16', 'bfloat16'),
|
322 |
+
dtype=getattr(torch, dtype)):
|
323 |
+
latent = self.diffusion.sample(
|
324 |
+
noise=noise,
|
325 |
+
sampler=sampler,
|
326 |
+
model=get_model(self.diffusion_model),
|
327 |
+
model_kwargs={
|
328 |
+
"cond": ctx, "guidance": guide_scale, "gc_seg": -1
|
329 |
+
},
|
330 |
+
steps=sample_steps,
|
331 |
+
show_progress=True,
|
332 |
+
guide_scale=guide_scale,
|
333 |
+
return_intermediate=None,
|
334 |
+
reverse_scale=-1,
|
335 |
+
**kwargs).float()
|
336 |
+
if self.use_dynamic_model: self.dynamic_unload(self.diffusion_model,
|
337 |
+
'diffusion_model',
|
338 |
+
skip_loaded=not self.use_dynamic_model)
|
339 |
+
|
340 |
+
# Decode to Pixel Space
|
341 |
+
self.dynamic_load(self.first_stage_model, 'first_stage_model')
|
342 |
+
samples = unpack_tensor_into_imagelist(latent, x_shapes)
|
343 |
+
x_samples = self.decode_first_stage(samples)
|
344 |
+
self.dynamic_unload(self.first_stage_model,
|
345 |
+
'first_stage_model',
|
346 |
+
skip_loaded=not self.use_dynamic_model)
|
347 |
+
x_samples = [x.squeeze(0) for x in x_samples]
|
348 |
|
349 |
imgs = [
|
350 |
+
torch.clamp((x_i.float() + 1.0) / 2.0,
|
351 |
min=0.0,
|
352 |
max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy()
|
353 |
for x_i in x_samples
|
354 |
]
|
355 |
imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs]
|
356 |
return imgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|