# -*- coding: utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. import threading import time import gradio as gr import numpy as np import torch from PIL import Image import glob import os, csv, sys import shlex import subprocess subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) subprocess.run(shlex.split('pip install scepter')) from scepter.modules.transform.io import pillow_convert from scepter.modules.utils.config import Config from scepter.modules.utils.distribute import we from scepter.modules.utils.file_system import FS from inference.ace_plus_diffusers import ACEPlusDiffuserInference from inference.utils import edit_preprocess from examples.examples import all_examples import spaces inference_dict = { "ACE_DIFFUSER_PLUS": ACEPlusDiffuserInference } fs_list = [ Config(cfg_dict={"NAME": "HuggingfaceFs", "TEMP_DIR": "./cache"}, load=False), Config(cfg_dict={"NAME": "ModelscopeFs", "TEMP_DIR": "./cache"}, load=False), Config(cfg_dict={"NAME": "HttpFs", "TEMP_DIR": "./cache"}, load=False), Config(cfg_dict={"NAME": "LocalFs", "TEMP_DIR": "./cache"}, load=False), ] for one_fs in fs_list: FS.init_fs_client(one_fs) os.environ["FLUX_FILL_PATH"]="hf://black-forest-labs/FLUX.1-Fill-dev" os.environ["PORTRAIT_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@portrait/comfyui_portrait_lora64.safetensors" os.environ["SUBJECT_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@subject/comfyui_subject_lora16.safetensors" os.environ["LOCAL_MODEL_PATH"]="hf://ali-vilab/ACE_Plus@local_editing/comfyui_local_lora16.safetensors" FS.get_dir_to_local_dir(os.environ["FLUX_FILL_PATH"]) FS.get_from(os.environ["PORTRAIT_MODEL_PATH"]) FS.get_from(os.environ["SUBJECT_MODEL_PATH"]) FS.get_from(os.environ["LOCAL_MODEL_PATH"]) csv.field_size_limit(sys.maxsize) refresh_sty = '\U0001f504' # 🔄 clear_sty = '\U0001f5d1' # 🗑️ upload_sty = '\U0001f5bc' # 🖼️ sync_sty = '\U0001f4be' # 💾 chat_sty = '\U0001F4AC' # 💬 video_sty = '\U0001f3a5' # 🎥 lock = threading.Lock() class DemoUI(object): def __init__(self, infer_dir = "./config", model_list='./models/model_zoo.yaml' ): self.model_yamls = glob.glob(os.path.join(infer_dir, '*.yaml')) self.model_choices = dict() self.default_model_name = '' for i in self.model_yamls: model_cfg = Config(load=True, cfg_file=i) model_name = model_cfg.NAME if model_cfg.IS_DEFAULT: self.default_model_name = model_name self.model_choices[model_name] = model_cfg print('Models: ', self.model_choices.keys()) assert len(self.model_choices) > 0 if self.default_model_name == "": self.default_model_name = list(self.model_choices.keys())[0] self.model_name = self.default_model_name pipe_cfg = self.model_choices[self.default_model_name] infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE") self.pipe = inference_dict[infer_name]() with spaces.GPU(duration=60): self.pipe.init_from_cfg(pipe_cfg) # choose different model self.task_model_cfg = Config(load=True, cfg_file=model_list) self.task_model = {} self.task_model_list = [] self.edit_type_dict = {"repainting": None} self.edit_type_list = ["repainting"] for task_name, task_model in self.task_model_cfg.MODEL.items(): self.task_model[task_name.lower()] = task_model self.task_model_list.append(task_name.lower()) for preprocessor in task_model.get("PREPROCESSOR", []): if preprocessor["TYPE"] in self.edit_type_dict: continue preprocessor["REPAINTING_SCALE"] = task_model.get("REPAINTING_SCALE", 1.0) self.edit_type_dict[preprocessor["TYPE"]] = preprocessor self.max_msgs = 20 # reformat examples self.all_examples = [ [ one_example["task_type"], one_example["edit_type"], one_example["instruction"], one_example["input_reference_image"], one_example["input_image"], one_example["input_mask"], one_example["output_h"], one_example["output_w"], one_example["seed"] ] for one_example in all_examples ] def construct_edit_image(self, edit_image, edit_mask): if edit_image is not None and edit_mask is not None: edit_image_rgb = pillow_convert(edit_image, "RGB") edit_image_rgba = pillow_convert(edit_image, "RGBA") edit_mask = pillow_convert(edit_mask, "L") arr1 = np.array(edit_image_rgb) arr2 = np.array(edit_mask)[:, :, np.newaxis] result_array = np.concatenate((arr1, arr2), axis=2) layer = Image.fromarray(result_array) ret_data = { "background": edit_image_rgba, "composite": edit_image_rgba, "layers": [layer] } return ret_data else: return None def create_ui(self): with gr.Row(equal_height=True, visible=True): with gr.Column(scale=2): self.gallery_image = gr.Image( height=600, interactive=False, type='pil', elem_id='Reference_image' ) with gr.Column(scale=1, visible=True) as self.edit_preprocess_panel: with gr.Row(): with gr.Accordion(label='Related Input Image', open=False): self.edit_preprocess_preview = gr.Image( height=600, interactive=False, type='pil', elem_id='preprocess_image' ) self.edit_preprocess_mask_preview = gr.Image( height=600, interactive=False, type='pil', elem_id='preprocess_image_mask' ) with gr.Row(): instruction = """ **Instruction**: 1. Please choose the Task Type based on the scenario of the generation task. We provide three types of generation capabilities: Portrait ID Preservation Generation(portrait), Object ID Preservation Generation(subject), and Local Controlled Generation(local editing), which can be selected from the task dropdown menu. 2. When uploading images in the Reference Image section, the generated image will reference the ID information of that image. Please ensure that the ID information is clear. In the Edit Image section, the uploaded image will maintain its structural and content information, and you must draw a mask area to specify the region to be regenerated. 3. When the task type is local editing, there are various editing types to choose from. Users can select different information preserving dimensions, such as edge information, color information, and more. The pre-processing information can be viewed in the 'related input image' tab. 4. More details can be found in [page](https://ali-vilab.github.io/ACE_plus_page). """ self.instruction = gr.Markdown(value=instruction) with gr.Row(): self.model_name_dd = gr.Dropdown( choices=self.model_choices, value=self.default_model_name, label='Model Version') self.task_type = gr.Dropdown(choices=self.task_model_list, interactive=True, value=self.task_model_list[0], label='Task Type') self.edit_type = gr.Dropdown(choices=self.edit_type_list, interactive=True, value=self.edit_type_list[0], label='Edit Type') with gr.Row(): self.generation_info_preview = gr.Markdown( label='System Log.', show_label=True) with gr.Row(variant='panel', equal_height=True, show_progress=False): with gr.Column(scale=10, min_width=500): self.text = gr.Textbox( placeholder='Input "@" find history of image', label='Instruction', container=False, lines = 1) with gr.Column(scale=2, min_width=100): with gr.Row(): with gr.Column(scale=1, min_width=100): self.chat_btn = gr.Button(value='Generate', variant = "primary") with gr.Accordion(label='Advance', open=True): with gr.Row(visible=True): with gr.Column(): self.reference_image = gr.Image( height=1000, interactive=True, image_mode='RGB', type='pil', label='Reference Image', elem_id='reference_image' ) with gr.Column(): self.edit_image = gr.ImageMask( height=1000, interactive=True, value=None, sources=['upload'], type='pil', layers=False, label='Edit Image', elem_id='image_editor', show_fullscreen_button=True, format="png" ) with gr.Row(): self.step = gr.Slider(minimum=1, maximum=1000, value=self.pipe.input.get("sample_steps", 20), visible=self.pipe.input.get("sample_steps", None) is not None, label='Sample Step') self.cfg_scale = gr.Slider( minimum=1.0, maximum=100.0, value=self.pipe.input.get("guide_scale", 4.5), visible=self.pipe.input.get("guide_scale", None) is not None, label='Guidance Scale') self.seed = gr.Slider(minimum=-1, maximum=10000000, value=-1, label='Seed') self.output_height = gr.Slider( minimum=256, maximum=1440, value=self.pipe.input.get("output_height", 1024), visible=self.pipe.input.get("output_height", None) is not None, label='Output Height') self.output_width = gr.Slider( minimum=256, maximum=1440, value=self.pipe.input.get("output_width", 1024), visible=self.pipe.input.get("output_width", None) is not None, label='Output Width') self.repainting_scale = gr.Slider( minimum=0.0, maximum=1.0, value=self.pipe.input.get("repainting_scale", 1.0), visible=True, label='Repainting Scale') with gr.Row(): self.eg = gr.Column(visible=True) def set_callbacks(self, *args, **kwargs): ######################################## def change_model(model_name): if model_name not in self.model_choices: gr.Info('The provided model name is not a valid choice!') return model_name, gr.update(), gr.update() if model_name != self.model_name: lock.acquire() del self.pipe torch.cuda.empty_cache() torch.cuda.ipc_collect() pipe_cfg = self.model_choices[model_name] infer_name = pipe_cfg.get("INFERENCE_TYPE", "ACE") self.pipe = inference_dict[infer_name]() self.pipe.init_from_cfg(pipe_cfg) self.model_name = model_name lock.release() return (model_name, gr.update(), gr.Slider( value=self.pipe.input.get("sample_steps", 20), visible=self.pipe.input.get("sample_steps", None) is not None), gr.Slider( value=self.pipe.input.get("guide_scale", 4.5), visible=self.pipe.input.get("guide_scale", None) is not None), gr.Slider( value=self.pipe.input.get("output_height", 1024), visible=self.pipe.input.get("output_height", None) is not None), gr.Slider( value=self.pipe.input.get("output_width", 1024), visible=self.pipe.input.get("output_width", None) is not None), gr.Slider(value=self.pipe.input.get("repainting_scale", 1.0)) ) self.model_name_dd.change( change_model, inputs=[self.model_name_dd], outputs=[ self.model_name_dd, self.text, self.step, self.cfg_scale, self.output_height, self.output_width, self.repainting_scale]) def change_task_type(task_type): task_info = self.task_model[task_type] edit_type_list = [self.edit_type_list[0]] for preprocessor in task_info.get("PREPROCESSOR", []): preprocessor["REPAINTING_SCALE"] = task_info.get("REPAINTING_SCALE", 1.0) self.edit_type_dict[preprocessor["TYPE"]] = preprocessor edit_type_list.append(preprocessor["TYPE"]) return gr.update(choices=edit_type_list, value=edit_type_list[0]) self.task_type.change(change_task_type, inputs=[self.task_type], outputs=[self.edit_type]) def change_edit_type(edit_type): edit_info = self.edit_type_dict[edit_type] edit_info = edit_info or {} repainting_scale = edit_info.get("REPAINTING_SCALE", 1.0) if edit_type == self.edit_type_list[0]: return gr.Slider(value=1.0) else: return gr.Slider( value=repainting_scale) self.edit_type.change(change_edit_type, inputs=[self.edit_type], outputs=[self.repainting_scale]) def preprocess_input(ref_image, edit_image_dict, preprocess = None): err_msg = "" is_suc = True if ref_image is not None: ref_image = pillow_convert(ref_image, "RGB") if edit_image_dict is None: edit_image = None edit_mask = None else: edit_image = edit_image_dict["background"] edit_mask = np.array(edit_image_dict["layers"][0])[:, :, 3] if np.sum(np.array(edit_image)) < 1: edit_image = None edit_mask = None elif np.sum(np.array(edit_mask)) < 1: err_msg = "You must draw the repainting area for the edited image." return None, None, None, False, err_msg else: edit_image = pillow_convert(edit_image, "RGB") edit_mask = Image.fromarray(edit_mask).convert('L') if ref_image is None and edit_image is None: err_msg = "Please provide the reference image or edited image." return None, None, None, False, err_msg return edit_image, edit_mask, ref_image, is_suc, err_msg @spaces.GPU(duration=60) def run_chat( prompt, ref_image, edit_image, task_type, edit_type, cfg_scale, step, seed, output_h, output_w, repainting_scale ): model_path = self.task_model[task_type]["MODEL_PATH"] edit_info = self.edit_type_dict[edit_type] if task_type in ["portrait", "subject"] and ref_image is None: err_msg = "Please provide the reference image." return (gr.Image(), gr.Column(visible=True), gr.Image(), gr.Image(), gr.Text(value=err_msg)) pre_edit_image, pre_edit_mask, pre_ref_image, is_suc, err_msg = preprocess_input(ref_image, edit_image) if not is_suc: err_msg = f"{err_msg}" return (gr.Image(), gr.Column(visible=True), gr.Image(), gr.Image(), gr.Text(value=err_msg)) pre_edit_image = edit_preprocess(edit_info, we.device_id, pre_edit_image, pre_edit_mask) # edit_image["background"] = pre_edit_image st = time.time() image, seed = self.pipe( reference_image=pre_ref_image, edit_image=pre_edit_image, edit_mask=pre_edit_mask, prompt=prompt, output_height=output_h, output_width=output_w, sampler='flow_euler', sample_steps=step, guide_scale=cfg_scale, seed=seed, repainting_scale=repainting_scale, lora_path = model_path ) et = time.time() msg = f"prompt: {prompt}; seed: {seed}; cost time: {et - st}s; repaiting scale: {repainting_scale}" return (gr.Image(value=image), gr.Column(visible=True), gr.Image(value=pre_edit_image if pre_edit_image is not None else pre_ref_image), gr.Image(value=pre_edit_mask if pre_edit_mask is not None else None), gr.Text(value=msg)) chat_inputs = [ self.reference_image, self.edit_image, self.task_type, self.edit_type, self.cfg_scale, self.step, self.seed, self.output_height, self.output_width, self.repainting_scale ] chat_outputs = [ self.gallery_image, self.edit_preprocess_panel, self.edit_preprocess_preview, self.edit_preprocess_mask_preview, self.generation_info_preview ] self.chat_btn.click(run_chat, inputs=[self.text] + chat_inputs, outputs=chat_outputs, queue=True) self.text.submit(run_chat, inputs=[self.text] + chat_inputs, outputs=chat_outputs, queue=True) @spaces.GPU(duration=60) def run_example(task_type, edit_type, prompt, ref_image, edit_image, edit_mask, output_h, output_w, seed): model_path = self.task_model[task_type]["MODEL_PATH"] step = self.pipe.input.get("sample_steps", 20) cfg_scale = self.pipe.input.get("guide_scale", 20) edit_info = self.edit_type_dict[edit_type] edit_image = self.construct_edit_image(edit_image, edit_mask) pre_edit_image, pre_edit_mask, pre_ref_image = preprocess_input(ref_image, edit_image) pre_edit_image = edit_preprocess(edit_info, we.device_id, pre_edit_image, pre_edit_mask) edit_info = edit_info or {} repainting_scale = edit_info.get("REPAINTING_SCALE", 1.0) st = time.time() image, seed = self.pipe( reference_image=pre_ref_image, edit_image=pre_edit_image, edit_mask=pre_edit_mask, prompt=prompt, output_height=output_h, output_width=output_w, sampler='flow_euler', sample_steps=step, guide_scale=cfg_scale, seed=seed, repainting_scale=repainting_scale, lora_path=model_path ) et = time.time() msg = f"prompt: {prompt}; seed: {seed}; cost time: {et - st}s; repaiting scale: {repainting_scale}" if pre_edit_image is not None: ret_image = Image.composite(pre_edit_image, Image.new("RGB", pre_edit_image.size, (0, 0, 0)), pre_edit_mask) else: ret_image = None return (gr.Image(value=image), gr.Column(visible=True), gr.Image(value=pre_edit_image if pre_edit_image is not None else pre_ref_image), gr.Image(value=pre_edit_mask if pre_edit_mask is not None else None), gr.Text(value=msg), gr.update(value=ret_image)) with self.eg: self.example_edit_image = gr.Image(label='Edit Image', type='pil', image_mode='RGB', visible=False) self.example_edit_mask = gr.Image(label='Edit Image Mask', type='pil', image_mode='L', visible=False) self.examples = gr.Examples( fn=run_example, examples=self.all_examples, inputs=[ self.task_type, self.edit_type, self.text, self.reference_image, self.example_edit_image, self.example_edit_mask, self.output_height, self.output_width, self.seed ], outputs=[self.gallery_image, self.edit_preprocess_panel, self.edit_preprocess_preview, self.edit_preprocess_mask_preview, self.generation_info_preview, self.edit_image], examples_per_page=6, cache_examples=False, run_on_click=True) if __name__ == '__main__': with gr.Blocks() as demo: chatbot = DemoUI() chatbot.create_ui() chatbot.set_callbacks() demo.launch()