File size: 1,442 Bytes
cbf3d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image


model_path = "chess-predict-model_transferlearning.keras"
model = tf.keras.models.load_model(model_path)

# Define the core prediction function
def predict_figure(image):
    # Preprocess image
    print(type(image))
    image = Image.fromarray(image.astype('uint8'))  # Convert numpy array to PIL image
    image = image.resize((150, 150)) #resize the image to 150x150
    image = np.array(image)
    image = np.expand_dims(image, axis=0) # same as image[None, ...]
    
    # Predict
    prediction = model.predict(image)
    
    # Apply softmax to get probabilities for each class
    prediction = tf.nn.softmax(prediction)
    
    # Create a dictionary with the probabilities for each Pokemon
    bishop = np.round(float(prediction[0][0]), 2)
    king = np.round(float(prediction[0][1]), 2)
    knight = np.round(float(prediction[0][2]), 2)
    pawn = np.round(float(prediction[0][3]), 2)
    queen = np.round(float(prediction[0][4]), 2)
    rook = np.round(float(prediction[0][5]), 2)

    
    return {'Bishop': bishop, 'King': king, 'Knight': knight, 'Pawn': pawn, 'Queen': queen, 'Rook': rook}

input_image = gr.Image()
iface = gr.Interface(
    fn=predict_figure,
    inputs=input_image, 
    outputs=gr.Label(),
    description="A simple mlp classification model for image classification using the mnist dataset.")
iface.launch(share=True)