schnymat commited on
Commit
c7450b6
·
verified ·
1 Parent(s): 648c887

Delete chess-figures-classification.py

Browse files
Files changed (1) hide show
  1. chess-figures-classification.py +0 -45
chess-figures-classification.py DELETED
@@ -1,45 +0,0 @@
1
- import gradio as gr
2
- import tensorflow as tf
3
- import numpy as np
4
- from PIL import Image
5
-
6
-
7
- model_path = "chess-predict-model_transferlearning.keras"
8
- model = tf.keras.models.load_model(model_path)
9
-
10
- # Define the core prediction function
11
- def predict_figure(image):
12
- # Preprocess image
13
- print(type(image))
14
- image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
15
- image = image.resize((150, 150)) #resize the image to 150x150
16
- image = np.array(image)
17
- image = np.expand_dims(image, axis=0) # same as image[None, ...]
18
-
19
- # Predict
20
- prediction = model.predict(image)
21
-
22
- # Apply softmax to get probabilities for each class
23
- prediction = tf.nn.softmax(prediction)
24
-
25
- # Create a dictionary with the probabilities for each Pokemon
26
- bishop = np.round(float(prediction[0][0]), 2)
27
- king = np.round(float(prediction[0][1]), 2)
28
- knight = np.round(float(prediction[0][2]), 2)
29
- pawn = np.round(float(prediction[0][3]), 2)
30
- queen = np.round(float(prediction[0][4]), 2)
31
- rook = np.round(float(prediction[0][5]), 2)
32
-
33
-
34
- return {'Bishop': bishop, 'King': king, 'Knight': knight, 'Pawn': pawn, 'Queen': queen, 'Rook': rook}
35
-
36
- input_image = gr.Image()
37
- iface = gr.Interface(
38
- fn=predict_figure,
39
- inputs=input_image,
40
- outputs=gr.Label(),
41
- description="A simple mlp classification model for image classification using the mnist dataset.")
42
- iface.launch(share=True)
43
-
44
-
45
-