import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "chess-predict-model_transferlearning.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_figure(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 150x150 image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] # Predict prediction = model.predict(image) # Apply softmax to get probabilities for each class prediction = tf.nn.softmax(prediction) # Create a dictionary with the probabilities for each Pokemon bishop = np.round(float(prediction[0][0]), 2) king = np.round(float(prediction[0][1]), 2) knight = np.round(float(prediction[0][2]), 2) pawn = np.round(float(prediction[0][3]), 2) queen = np.round(float(prediction[0][4]), 2) rook = np.round(float(prediction[0][5]), 2) return {'Bishop': bishop, 'King': king, 'Knight': knight, 'Pawn': pawn, 'Queen': queen, 'Rook': rook} input_image = gr.Image() iface = gr.Interface( fn=predict_figure, inputs=input_image, outputs=gr.Label(), description="A simple mlp classification model for image classification using the mnist dataset.") iface.launch(share=True)