scholar-2001's picture
Final
4cfc34d
import streamlit as st
import chromadb
from chromadb.utils import embedding_functions
import groq
from typing import Dict
import os
class CourseAdvisor:
def __init__(self, db_path: str = "./chroma_db"):
"""Initialize the course advisor with existing ChromaDB database."""
# Initialize persistent client with path
self.chroma_client = chromadb.PersistentClient(path=db_path)
# Initialize embedding function
self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="jinaai/jina-embeddings-v2-base-en"
)
# Get existing collection
self.collection = self.chroma_client.get_collection(
name="courses",
embedding_function=self.embedding_function
)
def query_courses(self, query_text: str, chat_history: str, api_key: str, n_results: int = 3) -> Dict:
"""Query the vector database and get course recommendations."""
# Initialize Groq client with provided API key
groq_client = groq.Groq(api_key=api_key)
try:
# Get relevant documents from vector DB
results = self.collection.query(
query_texts=[query_text],
n_results=min(n_results, self.collection.count()),
include=['documents', 'metadatas']
)
# Prepare context from retrieved documents
docs_context = "\n\n".join(results['documents'][0])
except Exception as e:
st.error(f"Error querying database: {str(e)}")
return {
'llm_response': "I encountered an error while searching the course database. Please try again.",
'retrieved_courses': []
}
# Create prompt with chat history
prompt = f"""Previous conversation:
{chat_history}
Current user query: {query_text}
Relevant course information:
{docs_context}
Please provide course recommendations based on the entire conversation context. Format your response as:
1. Understanding of the user's needs (based on conversation history)
2. Overall recommendation with reasoning
3. Specific benefits of each recommended course
4. Learning path suggestion (if applicable)
5. Any prerequisites or important notes"""
try:
# Get response from Groq
completion = groq_client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful course advisor who provides detailed, relevant course recommendations based on the user's needs and conversation history. Keep responses clear and well-structured."},
{"role": "user", "content": prompt}
],
model="mixtral-8x7b-32768",
temperature=0.7,
)
return {
'llm_response': completion.choices[0].message.content,
'retrieved_courses': results['metadatas'][0]
}
except Exception as e:
st.error(f"Error with Groq API: {str(e)}")
return {
'llm_response': "I encountered an error while generating recommendations. Please check your API key and try again.",
'retrieved_courses': []
}
def initialize_session_state():
"""Initialize session state variables."""
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'course_advisor' not in st.session_state:
st.session_state.course_advisor = CourseAdvisor()
if 'api_key' not in st.session_state:
st.session_state.api_key = ""
def get_chat_history() -> str:
"""Format chat history for LLM context."""
history = []
for message in st.session_state.messages[-5:]: # Only use last 5 messages for context
role = message["role"]
content = message["content"]
history.append(f"{role}: {content}")
return "\n".join(history)
def display_course_card(course: Dict):
"""Display a single course recommendation in a card format."""
with st.container():
# Add a light background and padding
with st.container():
st.markdown("""
<style>
.course-card {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)
with st.container():
st.markdown('<div class="course-card">', unsafe_allow_html=True)
# Course title
st.markdown(f"### {course['title']}")
col1, col2 = st.columns(2)
with col1:
# Handle categories - convert to list if string
categories = course.get('categories', 'N/A')
if isinstance(categories, str):
# Split by comma if it's a comma-separated string
categories = [cat.strip() for cat in categories.split(',')]
elif not isinstance(categories, list):
categories = [str(categories)]
# Display categories as bullet points if multiple
if len(categories) > 1:
st.markdown("**Categories:**")
for category in categories:
st.markdown(f"- {category}")
else:
st.markdown(f"**Category:** {categories[0]}")
st.markdown(f"**Lessons:** {course.get('lessons', 'N/A')}")
with col2:
st.markdown(f"**Price:** {course.get('price', 'N/A')}")
if 'url' in course:
st.markdown(f"**[Visit Course]({course['url']})**")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown("---")
def main():
st.set_page_config(
page_title="Course Recommender",
page_icon="πŸ“š",
layout="wide"
)
st.title("πŸ“š AI Course Recommender")
# Initialize session state
initialize_session_state()
# Display collection info
collection = st.session_state.course_advisor.collection
st.sidebar.info(f"Connected to database with {collection.count()} courses")
# Sidebar
with st.sidebar:
st.header("Settings")
# API key input
api_key = st.text_input("Enter Groq API Key",
type="password",
value=st.session_state.api_key)
if api_key != st.session_state.api_key:
st.session_state.api_key = api_key
# Clear chat button
if st.button("Clear Chat History"):
st.session_state.messages = []
# Main chat interface
st.header("Chat with AI Course Advisor")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("What would you like to learn?"):
# Check if API key is provided
if not st.session_state.api_key:
st.error("Please enter your Groq API key in the sidebar.")
return
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Get AI response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
# Get formatted chat history
chat_history = get_chat_history()
# Query courses with chat history
response = st.session_state.course_advisor.query_courses(
prompt,
chat_history,
st.session_state.api_key
)
# Display AI recommendation
st.markdown(response['llm_response'])
# Display course cards if any courses were retrieved
if response['retrieved_courses']:
st.markdown("### πŸ“‹ Recommended Courses")
for course in response['retrieved_courses']:
display_course_card(course)
# Add assistant response to chat history
st.session_state.messages.append({
"role": "assistant",
"content": response['llm_response'] + "\n\n" + "### Recommended Courses\n" +
"\n".join([f"- {course['title']}" for course in response['retrieved_courses']])
})
if __name__ == "__main__":
main()