schroneko's picture
Update app.py
3c1404f verified
raw
history blame
2.9 kB
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import gradio as gr
import spaces
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
if not huggingface_token:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
model_id = "meta-llama/Llama-Guard-3-8B-INT8"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
def parse_llama_guard_output(result):
# "<END CONVERSATION>" 以降の部分を抽出
safety_assessment = result.split("<END CONVERSATION>")[-1].strip()
# 行ごとに分割して処理
lines = [line.strip().lower() for line in safety_assessment.split('\n') if line.strip()]
if not lines:
return "Error", "No valid output", safety_assessment
# "safe" または "unsafe" を探す
safety_status = next((line for line in lines if line in ['safe', 'unsafe']), None)
if safety_status == 'safe':
return "Safe", "None", safety_assessment
elif safety_status == 'unsafe':
# "unsafe" の次の行を違反カテゴリーとして扱う
violated_categories = next((lines[i+1] for i, line in enumerate(lines) if line == 'unsafe' and i+1 < len(lines)), "Unspecified")
return "Unsafe", violated_categories, safety_assessment
else:
return "Error", f"Invalid output: {safety_status}", safety_assessment
@spaces.GPU
def moderate(user_input, assistant_response):
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=dtype,
device_map="auto",
quantization_config=quantization_config,
token=huggingface_token,
low_cpu_mem_usage=True
)
chat = [
{"role": "user", "content": user_input},
{"role": "assistant", "content": assistant_response},
]
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(
input_ids=input_ids,
max_new_tokens=200,
pad_token_id=tokenizer.eos_token_id,
do_sample=False
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
return parse_llama_guard_output(result)
iface = gr.Interface(
fn=moderate,
inputs=[
gr.Textbox(lines=3, label="User Input"),
gr.Textbox(lines=3, label="Assistant Response")
],
outputs=[
gr.Textbox(label="Safety Status"),
gr.Textbox(label="Violated Categories"),
gr.Textbox(label="Raw Output")
],
title="Llama Guard Moderation",
description="Enter a user input and an assistant response to check for content moderation."
)
if __name__ == "__main__":
iface.launch()