Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,21 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
-
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
8 |
-
if not huggingface_token:
|
9 |
-
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
10 |
-
|
11 |
model_id = "meta-llama/Llama-Guard-3-8B-INT8"
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
dtype = torch.bfloat16
|
14 |
|
15 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
16 |
|
17 |
-
@spaces.GPU
|
18 |
def load_model():
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_id,
|
22 |
torch_dtype=dtype,
|
23 |
device_map="auto",
|
24 |
quantization_config=quantization_config,
|
25 |
-
token=huggingface_token,
|
26 |
low_cpu_mem_usage=True
|
27 |
)
|
28 |
return tokenizer, model
|
@@ -36,9 +29,29 @@ def moderate(user_input, assistant_response):
|
|
36 |
{"role": "assistant", "content": assistant_response},
|
37 |
]
|
38 |
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
iface = gr.Interface(
|
44 |
fn=moderate,
|
@@ -46,7 +59,11 @@ iface = gr.Interface(
|
|
46 |
gr.Textbox(lines=3, label="User Input"),
|
47 |
gr.Textbox(lines=3, label="Assistant Response")
|
48 |
],
|
49 |
-
outputs=
|
|
|
|
|
|
|
|
|
50 |
title="Llama Guard Moderation",
|
51 |
description="Enter a user input and an assistant response to check for content moderation."
|
52 |
)
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
|
|
|
|
|
|
|
|
|
6 |
model_id = "meta-llama/Llama-Guard-3-8B-INT8"
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
dtype = torch.bfloat16
|
9 |
|
10 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
11 |
|
|
|
12 |
def load_model():
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
model_id,
|
16 |
torch_dtype=dtype,
|
17 |
device_map="auto",
|
18 |
quantization_config=quantization_config,
|
|
|
19 |
low_cpu_mem_usage=True
|
20 |
)
|
21 |
return tokenizer, model
|
|
|
29 |
{"role": "assistant", "content": assistant_response},
|
30 |
]
|
31 |
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device)
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
output = model.generate(
|
35 |
+
input_ids=input_ids,
|
36 |
+
max_new_tokens=200,
|
37 |
+
pad_token_id=tokenizer.eos_token_id,
|
38 |
+
do_sample=False
|
39 |
+
)
|
40 |
+
|
41 |
+
result = tokenizer.decode(output[0], skip_special_tokens=True)
|
42 |
+
|
43 |
+
result = result.split(assistant_response)[-1].strip()
|
44 |
+
|
45 |
+
is_safe = "safe" in result.lower()
|
46 |
+
categories = []
|
47 |
+
if not is_safe and "categories:" in result:
|
48 |
+
categories = [cat.strip() for cat in result.split("categories:")[1].split(",") if cat.strip()]
|
49 |
+
|
50 |
+
return {
|
51 |
+
"is_safe": "Safe" if is_safe else "Unsafe",
|
52 |
+
"categories": ", ".join(categories) if categories else "None",
|
53 |
+
"raw_output": result
|
54 |
+
}
|
55 |
|
56 |
iface = gr.Interface(
|
57 |
fn=moderate,
|
|
|
59 |
gr.Textbox(lines=3, label="User Input"),
|
60 |
gr.Textbox(lines=3, label="Assistant Response")
|
61 |
],
|
62 |
+
outputs=[
|
63 |
+
gr.Textbox(label="Safety Status"),
|
64 |
+
gr.Textbox(label="Violated Categories"),
|
65 |
+
gr.Textbox(label="Raw Output")
|
66 |
+
],
|
67 |
title="Llama Guard Moderation",
|
68 |
description="Enter a user input and an assistant response to check for content moderation."
|
69 |
)
|